• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of a Temporal Database Framework for Processing Event Queries

January 2012 (has links)
abstract: This dissertation presents the Temporal Event Query Language (TEQL), a new language for querying event streams. Event Stream Processing enables online querying of streams of events to extract relevant data in a timely manner. TEQL enables querying of interval-based event streams using temporal database operators. Temporal databases and temporal query languages have been a subject of research for more than 30 years and are a natural fit for expressing queries that involve a temporal dimension. However, operators developed in this context cannot be directly applied to event streams. The research extends a preexisting relational framework for event stream processing to support temporal queries. The language features and formal semantic extensions to extend the relational framework are identified. The extended framework supports continuous, step-wise evaluation of temporal queries. The incremental evaluation of TEQL operators is formalized to avoid re-computation of previous results. The research includes the development of a prototype that supports the integrated event and temporal query processing framework, with support for incremental evaluation and materialization of intermediate results. TEQL enables reporting temporal data in the output, direct specification of conditions over timestamps, and specification of temporal relational operators. Through the integration of temporal database operators with event languages, a new class of temporal queries is made possible for querying event streams. New features include semantic aggregation, extraction of temporal patterns using set operators, and a more accurate specification of event co-occurrence. / Dissertation/Thesis / Ph.D. Computer Science 2012
2

Efficient And Scalable Evaluation Of Continuous, Spatio-temporal Queries In Mobile Computing Environments

Cazalas, Jonathan M 01 January 2012 (has links)
A variety of research exists for the processing of continuous queries in large, mobile environments. Each method tries, in its own way, to address the computational bottleneck of constantly processing so many queries. For this research, we present a two-pronged approach at addressing this problem. Firstly, we introduce an efficient and scalable system for monitoring traditional, continuous queries by leveraging the parallel processing capability of the Graphics Processing Unit. We examine a naive CPU-based solution for continuous range-monitoring queries, and we then extend this system using the GPU. Additionally, with mobile communication devices becoming commodity, location-based services will become ubiquitous. To cope with the very high intensity of location-based queries, we propose a view oriented approach of the location database, thereby reducing computation costs by exploiting computation sharing amongst queries requiring the same view. Our studies show that by exploiting the parallel processing power of the GPU, we are able to significantly scale the number of mobile objects, while maintaining an acceptable level of performance. Our second approach was to view this research problem as one belonging to the domain of data streams. Several works have convincingly argued that the two research fields of spatiotemporal data streams and the management of moving objects can naturally come together. [IlMI10, ChFr03, MoXA04] For example, the output of a GPS receiver, monitoring the position of a mobile object, is viewed as a data stream of location updates. This data stream of location updates, along with those from the plausibly many other mobile objects, is received at a centralized server, which processes the streams upon arrival, effectively updating the answers to the currently active queries in real time. iv For this second approach, we present GEDS, a scalable, Graphics Processing Unit (GPU)-based framework for the evaluation of continuous spatio-temporal queries over spatiotemporal data streams. Specifically, GEDS employs the computation sharing and parallel processing paradigms to deliver scalability in the evaluation of continuous, spatio-temporal range queries and continuous, spatio-temporal kNN queries. The GEDS framework utilizes the parallel processing capability of the GPU, a stream processor by trade, to handle the computation required in this application. Experimental evaluation shows promising performance and shows the scalability and efficacy of GEDS in spatio-temporal data streaming environments. Additional performance studies demonstrate that, even in light of the costs associated with memory transfers, the parallel processing power provided by GEDS clearly counters and outweighs any associated costs. Finally, in an effort to move beyond the analysis of specific algorithms over the GEDS framework, we take a broader approach in our analysis of GPU computing. What algorithms are appropriate for the GPU? What types of applications can benefit from the parallel and stream processing power of the GPU? And can we identify a class of algorithms that are best suited for GPU computing? To answer these questions, we develop an abstract performance model, detailing the relationship between the CPU and the GPU. From this model, we are able to extrapolate a list of attributes common to successful GPU-based applications, thereby providing insight into which algorithms and applications are best suited for the GPU and also providing an estimated theoretical speedup for said GPU-based applications

Page generated in 0.0434 seconds