1 |
Robotic Automation of a CNC MachineHovey, Jace 01 January 2019 (has links)
Robotic automation of CNC machines is becoming more popular as robot technology advances and becomes more readily available. While some CNC machines can run autonomously with part catchers, vertical milling centers require an external entity to keep the machine running. Collaborative and Industrial robots are the two main selections for automating a vertical CNC milling machine. We investigate specifically which robot type is most effective for machine tending a Haas VF2 vertical milling center. To do this a cell floor plan, risk assessment, overall equipment effectiveness evaluation, and a total cost analysis are performed to compare robots. With this results of each analysis process, it appears the industrial robot is most effective for the machine tending case.
|
2 |
Tend and befriend : a bio-behavioural construction of women's responses to stressJoubert, Daniel Francois 27 July 2011 (has links)
The Tend and Befriend stress response model suggests that women have, through natural selection, evolved a different stress response reaction to that of men. It thus offers a collective, gender stereotypical reality of women’s responses to stress. In this research the Tend and Befriend model is thus viewed as a dominant public discourse which informs or influences the private narratives or stories of women. It is this interaction between public (dominant) discourses and private narratives which are investigated through using the Tend and Befriend model as a discursive landscape. If gender or gender roles are flexible, there is a concern that individual women might be misrepresented and not given a voice by the dominant discourse which supports gender stereotypical models like the Tend and Befriend model. This qualitative exploration was done by exploring the socially constructed stress responses of five professional women. To investigate this, as researcher I explored the narratives of these women in face-to-face individual interviews. The constructions explored include: How these women understand the way they respond to stress; how they view the Tend and Befriend model; and the influence of the model on them. Through the lenses of social constructionism a broader insight into the stress responses of women may be obtained. From the data analysis, I uncovered very little ‘evidence’ for tending or befriending behaviour as described by Taylor, Klein, Lewis, Gruenewald, Gurung and Updegraff (2000), with the participants. In the exploration the closest response to the model which the participants reported was befriending, however in their construction of befriending they employed it as a workplace strategy. The only form of tending co-constructed in the interview process was a secondary response to stress and a unique outcome to this study: Self-tending. Additionally, as social constructionist research predicts, these participants illustrated that for them stress responses are not concrete, as models would like to suggest, rather they employed an alternate multifaceted stress response approach which was another significant unique outcome to this study. / Dissertation (MA)--University of Pretoria, 2010. / Psychology / unrestricted
|
3 |
Návrh robotické buňky pro výrobu plošných dílů / Design of a Robotic Cell for Flat Parts ProductionZávodský, Martin January 2021 (has links)
This master’s thesis deals with the design of a robotic cell for the automation of woodworking machine tending. The task of the robot is to manipulate with the specified laminated chipboards of various sizes, before and after machining. The boards are brought to the cell on pallets in three possible placement variants. After a brief research part, conceptual designs of cell layout were created. The optimal and further elaborated design came as a result of selected evaluation criteria. The next part of the thesis consists of designs and selection processes of individual components. These were later used to create a simulation model in Tecnomatix Process Simulate software (Siemens), that helped to verify the functionality of the cell layout, design the control logic and acquire the time of the manipulation cycle used for informative calculation of annual production. In the end, the final design was evaluated from an economic point of view with an emphasis on the return of the initial investment.
|
4 |
Robotic Automation of Turning Machines in Fenceless Production: A Planning Toolset for Economic-based Selection Optimization between Collaborative and Classical Industrial RobotsSchneider, Christopher 09 November 2022 (has links)
Ursprünglich wurden Industrieroboter hauptsächlich hinter Schutzzäunen betrieben, um den Sicherheitsanforderungen gerecht zu werden. Mit der Flexibilisierung der Produktion wurden diese scharfen Trennbereiche zunehmend aufgeweicht und externe Sicherheitstechnik, wie Abstandssensoren, genutzt, um Industrieroboter schutzzaunlos zu betreiben. Ausgehend vom Gedanken dieser Koexistenz bzw. Kooperation wurde die Sicherheitssensorik in den Roboter integriert, um eine wirkliche Kollaboration zu ermöglichen. Diese sogenannten kollaborierenden Roboter, oder Cobots, eröffnen neue Applikationsfelder und füllen somit die bestehenden Automatisierungslücken. Doch welche Automatisierungsvariante ist aus wirtschaftlichen Gesichtspunkten die geeignetste? Bisherige Forschung untersucht zum Großteil isoliert eine der beiden Technologien, ohne
dabei einen Systemvergleich hinsichtlich technologischer Spezifika und Wirtschaftlichkeit anzustellen. Daher widmet sich diese Dissertation einer Methodik zum wirtschaftlichen Vergleich von kollaborierenden Robotern und Industrierobotern in schutzzaunlosen Maschinenbeladungssystemen. Besonderer Fokus liegt dabei auf dem Herausarbeiten der technischen Faktoren, die die Wirtschaftlichkeit maßgeblich beeinflussen, um ein Systemverständnis der wirtschaftlichen Struktur beider Robotertechnologievarianten zu erhalten. Zur Untersuchung werden die Inhalte eines solchen Planungsvorhabens beschrieben, kategorisiert, systematisiert und modularisiert. Auf wirtschaftlicher Seite wird ein geeignetes Optimierungsmodell vorgestellt, während auf technischer Seite vor allem die Machbarkeit hinsichtlich Greifbarkeit, Layoutplanung, Robotergeschwindigkeiten und Zykluszeitbestimmung untersucht wird. Mit deduktiven, simulativen, empirischen und statistischen Methoden wird das Systemverhalten für die einzelnen Planungsinhalte analysiert, um die Gesamtwirtschaftlichkeit mit einem Minimum an Investment,- Produktions,- und Zykluszeitinformationen a priori vorhersagen zu können. Es wird gezeigt, dass durch einen Reverse Engineering Ansatz die notwendigen Planungsdaten, im Sinne von Layoutkomposition, Robotergeschwindigkeiten und Taktzeiten, mithilfe von Frontloading zu Planungsbeginn zur Verfügung gestellt werden können. Dabei dient der Kapitalwert als wirtschaftliche Bewertungsgrundlage, dessen Abhängigkeit vom Mensch-Roboter-Interaktionsgrad in einem Vorteilhaftigkeitsdiagramm für die einzelnen Technologiealternativen dargestellt werden kann. Wirtschaftlich fundierte Entscheidungen können somit auf quantitiativer Basis getroffen werden.:1. Introduction 25
1.1 Research Domain 25
1.2 Research Niche 26
1.3 Research Structure 28
2. State of the Art and Research 31
2.1 Turning Machines and Machine Tending 31
2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31
2.1.2 Workpiece System 34
2.1.3 Machine System 36
2.1.4 Logistics System 39
2.1.5 Handling System 41
2.2 Robotics 43
2.2.1 Robot Installation Development and Application Fields 43
2.2.2 Fenceless Industrial and Collaborative Robots 48
2.2.3 Robot Grippers 55
2.3 Planning and Evaluation Methods 56
2.3.1 Planning of General and Manual Workstations 56
2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59
2.3.3 Robot Safety Planning 61
2.3.4 Economic Evaluation Methods 70
2.4 Synthesis - State of the Art and Research 71
3. Solution Approach 77
3.1 Need for Research and General Solution Approach 77
3.2 Use Case Delineation and Planning Focus 80
3.3 Economic Module – Solution Approach 86
3.4 Gripper Feasibility Module – Solution Approach 89
3.5 Rough Layout Discretization Model – Solution Approach 94
3.6 Cycle Time Estimation Module – Solution Approach 97
3.7 Collaborative Speed Estimation Module – Solution Approach 103
3.7.1 General Approach 103
3.7.2 Case 1: Quasi-static Contact with Hand 107
3.7.3 Case 2: Transient Contact with Hand 109
3.7.4 Case 3: Transient Contact with Shoulder 111
3.8 Synthesis – Solution Approach 114
4. Module Development 117
4.1 Economic Module – Module Development 117
4.1.1 General Approach 117
4.1.2 Calculation Scheme for Manual Operation 117
4.1.3 Calculation Scheme for Collaborative Robots 118
4.1.4 Calculation Scheme for Industrial Robots 120
4.2 Gripper Feasibility Module – Module Development 121
4.3 Rough Layout Discretization Module – Module Development 122
4.3.1 General Approach 122
4.3.2 Two-Dimensional Layout Pattern 123
4.3.3 Three-Dimensional Layout Pattern 125
4.4 Cycle Time Estimation Module – Module Development 126
4.4.1 General Approach 126
4.4.2 Reachability Study 127
4.4.3 Simulation Results 128
4.5 Collaborative Speed Estimation Module – Module Development 135
4.5.1 General Approach 135
4.5.2 Case 1: Quasi-static Contact with Hand 135
4.5.3 Case 2: Transient Contact with Hand 143
4.5.4 Case 3: Transient Contact with Shoulder 145
4.6 Synthesis – Module Development 149
5. Practical Verification 155
5.1 Use Case Overview 155
5.2 Gripper Feasibility 155
5.3 Layout Discretization 156
5.4 Collaborative Speed Estimation 157
5.5 Cycle Time Estimation 158
5.6 Economic Evaluation 160
5.7 Synthesis – Practical Verification 161
6. Results and Conclusions 165
6.1 Scientific Findings and Results 165
6.2 Critical Appraisal and Outlook 173 / Initially, industrial robots were mainly operated behind safety fences to account for the safety requirements. With production flexibilization, these sharp separation areas have been increasingly softened by utilizing external safety devices, such as distance sensors, to operate industrial robots fenceless. Based on this idea of coexistence or cooperation, safety technology has been integrated into the robot to enable true collaboration. These collaborative robots, or cobots, open up new application fields and fill the existing automation gap. But which automation variant is most suitable from an economic perspective? Present research dealt primarily isolated with one technology without comparing these systems regarding technological and economic specifics. Therefore, this doctoral thesis pursues a methodology to economically compare collaborative and industrial
robots in fenceless machine tending systems. A particular focus lies on distilling the technical factors that mainly influence the profitability to receive a system understanding of the economic structure of both robot technology variants. For examination, the contents of such a planning scheme are described, categorized, systematized, and modularized. A suitable optimization model is presented on the economic side, while the feasibility regarding gripping, layout planning, robot velocities, and cycle time determination is assessed on the technical side. With deductive, simulative, empirical, and statistical methods, the system behavior of the single planning entities is analyzed to predict the overall profitability a priori with a minimum of investment,- production,- and cycle time information. It is demonstrated that the necessary planning data, in terms of layout composition, robot velocities, and cycle times, can be frontloaded to the project’s beginning with a reverse engineering approach. The net present value serves as the target figure, whose dependency on the human-robot interaction grade can be illustrated in an advantageousness diagram for the individual technical alternatives. Consequently, sound economic decisions can be made on a quantitative basis.:1. Introduction 25
1.1 Research Domain 25
1.2 Research Niche 26
1.3 Research Structure 28
2. State of the Art and Research 31
2.1 Turning Machines and Machine Tending 31
2.1.1 Tooling Machine Market Trends and Machine Tending Systems 31
2.1.2 Workpiece System 34
2.1.3 Machine System 36
2.1.4 Logistics System 39
2.1.5 Handling System 41
2.2 Robotics 43
2.2.1 Robot Installation Development and Application Fields 43
2.2.2 Fenceless Industrial and Collaborative Robots 48
2.2.3 Robot Grippers 55
2.3 Planning and Evaluation Methods 56
2.3.1 Planning of General and Manual Workstations 56
2.3.2 Cell Planning for Fully Automated and Hybrid Robot Systems 59
2.3.3 Robot Safety Planning 61
2.3.4 Economic Evaluation Methods 70
2.4 Synthesis - State of the Art and Research 71
3. Solution Approach 77
3.1 Need for Research and General Solution Approach 77
3.2 Use Case Delineation and Planning Focus 80
3.3 Economic Module – Solution Approach 86
3.4 Gripper Feasibility Module – Solution Approach 89
3.5 Rough Layout Discretization Model – Solution Approach 94
3.6 Cycle Time Estimation Module – Solution Approach 97
3.7 Collaborative Speed Estimation Module – Solution Approach 103
3.7.1 General Approach 103
3.7.2 Case 1: Quasi-static Contact with Hand 107
3.7.3 Case 2: Transient Contact with Hand 109
3.7.4 Case 3: Transient Contact with Shoulder 111
3.8 Synthesis – Solution Approach 114
4. Module Development 117
4.1 Economic Module – Module Development 117
4.1.1 General Approach 117
4.1.2 Calculation Scheme for Manual Operation 117
4.1.3 Calculation Scheme for Collaborative Robots 118
4.1.4 Calculation Scheme for Industrial Robots 120
4.2 Gripper Feasibility Module – Module Development 121
4.3 Rough Layout Discretization Module – Module Development 122
4.3.1 General Approach 122
4.3.2 Two-Dimensional Layout Pattern 123
4.3.3 Three-Dimensional Layout Pattern 125
4.4 Cycle Time Estimation Module – Module Development 126
4.4.1 General Approach 126
4.4.2 Reachability Study 127
4.4.3 Simulation Results 128
4.5 Collaborative Speed Estimation Module – Module Development 135
4.5.1 General Approach 135
4.5.2 Case 1: Quasi-static Contact with Hand 135
4.5.3 Case 2: Transient Contact with Hand 143
4.5.4 Case 3: Transient Contact with Shoulder 145
4.6 Synthesis – Module Development 149
5. Practical Verification 155
5.1 Use Case Overview 155
5.2 Gripper Feasibility 155
5.3 Layout Discretization 156
5.4 Collaborative Speed Estimation 157
5.5 Cycle Time Estimation 158
5.6 Economic Evaluation 160
5.7 Synthesis – Practical Verification 161
6. Results and Conclusions 165
6.1 Scientific Findings and Results 165
6.2 Critical Appraisal and Outlook 173
|
5 |
Automatizace obsluhy výrobního stroje a řešení robotického odjehlení na externích pneumatických nástrojích / Automation of production machine operation and robotic deburring within external pneumatic toolsProcházka, Jakub January 2020 (has links)
The task of this master thesis is to design a robotic workcell for an automation of the production machine operation followed by robotic deburring of the parts within external pneumatic tools. There is chosen the most suitable concept of the workplace layout of its included sub-components based on the input parameters. The first part is dedicated to design or select sub-components of the workcell as input magazine, robots, end effectors, deburring station etc. Afterwards, there is created a simulation model of the workcell in Process Simulate software for the verification of demanded cycle times and workcell functionality. The final design has to meet safety standards and technical and economical evaluation is permormed at the end of the thesis.
|
6 |
Návrh robotické buňky pro obsluhu obráběcího stroje / Design of a Robotic Cell for a Machine Tending ApplicationRusňák, Filip January 2021 (has links)
The master thesis deals with design of a robotic workcell for the operating of CNC lathe. The material input is realized by bin picking technology. The first part is an overview of related industries. Three variants of the workcell layout were created in the second part and the most suitable variant was selected. Selected variant is further elaborated, including 3D models of the workplace parts and drawings. The functionality of the designed workcell is checked by Siemens Process Simulate software simulation. The technical and economical evaluation is performed at the final part of the thesis.
|
Page generated in 0.0762 seconds