1 |
Synthesis and Characterization of Ligands and Transition Metal Complexes Containing M-Terphenyl ScaffoldsMa, Liqing January 2007 (has links)
No description available.
|
2 |
Conjugated Low Coordinate Organophosphorus Materials: Synthesis, Characterization and Photochemical StudiesGudimetla, Vittal Babu 11 December 2009 (has links)
No description available.
|
3 |
Conjugated Low Coordinate Organophosphorus Materials: Synthesis, Characterization and Photochemical StudiesGudimetla, Vittal Babu 29 December 2009 (has links)
No description available.
|
4 |
Controlling Electronic Connectivity in Nanoscale SystemsGadjieva, Natalia January 2022 (has links)
This dissertation summarizes my research in the Nuckolls group on two projects, with a central theme of achieving control of electronic coupling in various nanoscale systems. The two studies of interest aim at the study of emerging properties from alkali-doping of polyaromatic hydrocarbons (PAH), and the synthesis of novel metal chalcogen molecular clusters.
Chapter 1 is divided into two parts. Part one provides a brief history of the forces we associate with bond formation. We will learn that although defining a “chemical bond” is helpful, it is limited to our incomplete understanding of what forces contribute to its existence. The behavior of an electron in externally applied magnetic fields will be discussed, where the collective behavior of electrons in a material can be measured, showing a myriad of emerging properties. The known superconducting alkali-doped PAHs are introduced, followed by the unresolved problems of reproducibility and lack of structural data to accompany superconducting samples. Finally, the proximity of AFM to superconductivity is discussed, which could give us insights on further exploration of hight temperature organic superconductors. Part two introduces atomically precise clusters of atoms, also knows as superatoms. Various synthetic approaches to create metal chalcogenide superatoms are introduced. Next, a closer look into the cobalt selenide core, [Co6Se8], is presented. The ability to selectively substitute the ligands on this superatom, achieves dimensional control. The subunit can be seen as a 0-dimensional subunit, where it readily gives away its electrons. Furthermore, assembly of the clusters into 1-, 2-, and 3-dimensional structures is described.
Chapter 2 introduces a novel approach to acquire phase pure alkali-doped PAHs, p-terphenyl specifically. Previous reports of solution-processed doping of PAH have inspired highly reliable synthesis of these salts, by employing a chelating agent to stabilize the alkali metal. The first half of chapter 2 analyzes one such crystal in detail, describing emerging AFM fluctuations. The AFM coupling between nearest neighboring p-terphenyls occurs in all three crystallographic directions. Interestingly, this coupling can be seen as an unconventional bond between two terphenyl units along the hard axis, and resembles resonance structures seen in polyacetylene. The second half of the chapter further investigates the novel method, obtaining a library of alkali-doped p-terphenyls. This approach allows for selective variation of either the alkali-metal, the chelating agent, or the electronic structure of p-terphenyl. Obtaining nearly a dozen structures allows for a study of trends of doping level and accompanied magnetic properties.
Lastly, Chapter 3 proves a new mechanism for ligand substitution of cobalt selenide superatomic clusters, using an easily removable carbene as the ligand. This approach grants access to new surface ligands and core shapes to expand the properties of these superatoms. Through this approach, larger atomically precise materials can be targeted, giving rise to new types of electronic properties.
|
5 |
High Birefringence Liquid Crystals For Optical CommunicationsParish, Amanda Jane 01 January 2007 (has links)
High birefringence (Δn > 0.4) nematic liquid crystals are particularly attractive for infrared applications because they enable a thinner cell gap to be used for achieving fast response time and improved diffraction efficiency. In this thesis, the mesomorphic and electro‐optic properties of several new fluorinated isothiocyanate (NCS) terphenyl and phenyl tolane single compounds and mixtures are reported. The single compounds demonstrated Δn~0.35‐0.52 in the visible spectral region at room temperature and exhibit relatively low viscosity. It was found that lateral fluorine substitutions and short alkyl chains eliminate smectic phase and lower the melting temperature of the single compounds. However, the consequence of using highly conjugated compounds to improve electro‐optic properties is that the nematic phase is exhibited at high temperatures, over 100°C, and therefore single compounds cannot be used for device applications. Therefore, several mixtures based on the terphenyl and phenyl‐tolane compounds were formulated and evaluated. The purpose of mixtures is to find the optimum balance between electro‐optic performance and the mesomorphic properties that determine the operating temperature range. It was found that mixture formulations greatly improved mesomorphic properties to produce nematic phase at or near room temperature and suppressed smectic phase to below 0°C or eliminating completely. The analysis presented evaluates the benefits of lowering the operating temperature versus the consequence of degrading the electro‐optic properties.
|
6 |
DESIGN AND SYNTHESIS OF LIQUID CRYSTALS WITH CONTROLLED ABSORPTION PROPERTIES IN THE MIDWAVE INFRARED REGIONTripathi, Suvagata 25 November 2014 (has links)
No description available.
|
7 |
Synthesis and Mesogenic Properties of Liquid Crystals with Bent Core-Tail Substitution GeometryDavis, David Richard 30 July 2013 (has links)
No description available.
|
8 |
Synthesis and Characterization of Molecules and π-Conjugated Materials Containing Low-Coordinate PhosphorusChen, Xufang January 2005 (has links)
No description available.
|
9 |
Advanced Liquid Crystal Materials For Display And Photonic ApplicationsChen, Yuan 01 January 2014 (has links)
Thin-film-transistor (TFT) liquid crystal display (LCD) has been widely used in smartphones, pads, laptops, computer monitors, and large screen televisions, just to name a few. A great deal of effort has been delved into wide viewing angle, high resolution, low power consumption, and vivid color. However, relatively slow response time and low transmittance remain as technical challenges. To improve response time, several approaches have been developed, such as low viscosity liquid crystals, overdrive and undershoot voltage schemes, thin cell gap with a high birefringence liquid crystal, and elevated temperature operation. The state-of-the-art gray-to-gray response time of a nematic LC device is about 5 ms, which is still not fast enough to suppress the motion picture image blur. On the other hand, the LCD panel's transmittance is determined by the backlight, polarizers, TFT aperture ratio, LC transmittance, and color filters. Recently, a fringe-field-switching mode using a negative dielectric anisotropy (Δε) LC (n-FFS) has been demonstrated, showing high transmittance (98%), single gamma curve, and cell gap insensitivity. It has potential to replace the commonly used p-FFS (FFS using positive Δε LC) for mobile displays. With the urgent need of submillisecond response time for enabling color sequential displays, polymer-stabilized blue phase liquid crystal (PS-BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLCs exhibit several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltage-off state, and large cell gap tolerance. However, some bottlenecks such as high operation voltage, hysteresis, residual birefringence, and slow charging issue due to the large capacitance, remain to be overcome before their widespread applications can be realized. The material system of PS-BPLC, including nematic LC host, chiral dopant, and polymer network, are discussed in detail. Each component plays an essential role affecting the electro-optic properties and the stability of PS-BPLC. In a PS-BPLC system, in order to lower the operation voltage the host LC usually has a very large dielectric anisotropy (Δε > 100), which is one order of magnitude larger than that of a nematic LC. Such a large Δε not only leads to high viscosity but also results in a large capacitance. High viscosity slows down the device fabrication process and increases device response time. On the other hand, large capacitance causes slow charging time to each pixel and limits the frame rate. To reduce viscosity, we discovered that by adding a small amount (~6%) of diluters, the response time of the PS-BPLC is reduced by 2X-3X while keeping the Kerr constant more or less unchanged. Besides, several advanced PS-BPLC materials and devices have been demonstrated. By using a large Δε BPLC, we have successfully reduced the voltage to <10V while maintaining submillisecond response time. Finally we demonstrated an electric fieldindeced monodomain PS-BPLC, which enables video-rate reflective display with vivid colors. The highly selective reflection in polarization makes it promising for photonics application. Besides displays in the visible spectral region, LC materials are also very useful electro-optic media for near infrared and mid-wavelength infrared (MWIR) devices. However, large absorption has impeded the widespread application in the MWIR region. With delicate molecular design strategy, we balanced the absorption and liquid crystal phase stability, and proposed a fluoro-terphenyl compound with low absorption in both MWIR and near IR regions. This compound serves as an important first example for future development of low-loss MWIR liquid crystals, which would further expand the application of LCs for amplitude and/or phase modulation in MWIR region.
|
10 |
Darstellung neuer Organometallhalogenide mit Elementen der 13. und 14. Gruppe des Periodensystems und Versuche zur Synthese von Organogermanolen / Synthesis of novel organometal halides with elements of group 13 and 14 of the periodic system and attempts to prepare organogermanolesHohmeister, Holger 02 July 2003 (has links)
No description available.
|
Page generated in 0.0687 seconds