• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conductive and convective heat transfer in sediments near streams

Lapham, Wayne Wright, Lapham, Wayne Wright January 1988 (has links)
An Fourier Series solution is presented that describes the simultaneous, one-dimensional, vertical flow of heat and ground water in homogeneous, porous media beneath streams. Use of this analytical solution provides an indirect method of determining vertical flow rates and the effective vertical hydraulic connection between sediments and overlying streams. The method consists of varying the Darcy velocity in the solution until the temperature profiles predicted by the solution match those measured in the field. The method was applied at three field sites in Central Massachusetts. At the first site, which is underlain by lacustrine clay, the vertical flow rate through the clay was determined to be less than 5x10⁻⁷ cm/s and the vertical hydraulic conductivity was less than 0.08 cm/s. The vertical flow rate through mixed sand and gravel underlying the second site equaled 7.5x10⁻⁶ cm/s and vertical hydraulic conductivities of sediments underlying the site ranged from 3.8x10⁻⁴ to 3.1x10⁻³ cm/s. The vertical flow rate through mixed sand and gravel underlying the third site ranged from 3x10⁻⁵ to 7x10⁻⁵ cm/s and vertical hydraulic conductivities of sediments underlying the site ranged from 1x10⁻³ to 4x10⁻³ cm/s. The simultaneous flow of heat and ground water in sediments beneath streams may be more complex than that assumed for the Fourier Series solution. The additional complexity may be partially attributable to two factors: the presence of horizontal ground-water flow, and the presence of thermal conditions near the stream that differ from conditions in the stream itself. The effects of that these two factors have on thermal regimes in sediments beneath streams were investigated using numerical simulations. Results indicate, for example, that under conditions of no horizontal ground-water flow, thermal conditions near the stream can affect temperatures in sediments beneath the stream as far as 900 cm from the stream bank. For horizontal flow rates greater than about 1x10⁻⁴ cm/s, thermal conditions near the stream can affect temperatures in sediments beneath the stream as far as 1500 cm from the stream bank. The method of determining flow rates and hydraulic connection has been applied to stream-aquifer systems. However, the method also may have application in other hydrologic settings. Two such applications might be to determine flow rates to and from lakes and rates of recharge to aquifers.
12

Finite element simulations of shear aggregation as a mechanism to form platinum group elements (PGEs) in dyke-like ore bodies

Mbandezi, Mxolisi Louis January 2002 (has links)
This research describes a two-dimensional modelling effort of heat and mass transport in simplified intrusive models of sills and their feeder dykes. These simplified models resembled a complex intrusive system such as the Great Dyke of Zimbabwe. This study investigated the impact of variable geometry to transport processes in two ways. First the time evolution of heat and mass transport during cooling was investigated. Then emphasis was placed on the application of convective scavenging as a mechanism that leads to the formation of minerals of economic interest, in particular the Platinum Group Elements (PGEs). The Navier-Stokes equations employed generated regions of high shear within the magma where we expected enhanced collisions between the immiscible sulphide liquid particles and PGEs. These collisions scavenge PGEs from the primary melt, aggregate and concentrate it to form PGEs enrichment in zero shear zones. The PGEs scavenge; concentrate and 'glue' in zero shear zones in the early history of convection because of viscosity and dispersive pressure (Bagnold effect). The effect of increasing the geometry size enhances scavenging, creates bigger zero shear zones with dilute concentrate of PGEs but you get high shear near the roots of the dyke/sill where the concentration will not be dilute. The time evolution calculations show that increasing the size of the magma chamber results in stronger initial convection currents for large magma models than for small ones. However, convection takes, approximately the same time to cease for both models. The research concludes that the time evolution for convective heat transfer is dependent on the viscosity rather than on geometry size. However, conductive heat transfer to the e-folding temperature was almost six times as long for the large model (M4) than the small one (M2). Variable viscosity as a physical property was applied to models 2 and 4 only. Video animations that simulate the cooling process for these models are enclosed in a CD at the back of this thesis. These simulations provide information with regard to the emplacement history and distribution of PGEs ore bodies. This will assist the reserve estimation and the location of economic minerals.
13

Sensible heat flux estimation over a prairie grassland by neural networks

Abareshi, Behzad January 1996 (has links)
No description available.
14

Meridional transport of sensible heat in the atmosphere and its relation to traveling wave systems /

Davis, Jerry Mallory January 1972 (has links)
No description available.
15

Turbulent heat fluxes in a forest.

McBean, G. A. January 1966 (has links)
No description available.
16

SUBSURFACE HEAT FLOW AS A MEANS FOR DETERMINING AQUIFER CHARACTERISTICS IN THE TUCSON BASIN, PIMA COUNTY, ARIZONA

Supkow, Donald James. January 1971 (has links)
No description available.
17

Structural analysis of airborne flux traces and their link to remote sensing of vegetation and surface temperature

Caramori, Paulo Henrique January 1992 (has links)
This thesis examines the link between airborne flux estimates of CO$ sb2$, sensible heat, and water vapor, and surface parameters retrieved by remote sensing. Chapter 1 analyses the relationship between surface temperature and vegetation indices, obtained from the Advanced Very High Resolution Radiometer on board of NOAA-9 and -10 satellites, and fluxes of sensible heat, latent heat, and CO$ sb2$, estimated from aircraft. Linear relationships between CO$ sb2$ and the Normalized Difference Vegetation Index (NDVI) or the Simple Ratio vegetation index (SR) are found on a daily basis, but a highly nonlinear relationship appears for the seasonal variation. Latent Heat fluxes showed the poorest correlations with surface parameters. A seasonal linear relationship appeared between sensible heat and NDVI. Local extreme flux values due to the intermittency of boundary layer dynamics largely contribute to lower the correlations; such variations are the reason for the difficulties in relating fluxes obtained from single overpasses and over short distances to fixed points at the surface. This problem is further examined in Chapter 2, in which conditional sampling of airborne flux estimates is used to characterize the turbulent structures that are carrying flux, and their link to the surface. The analysis confirms that few extreme events may carry a significant fraction of the flux. Missing or hitting one of these structures may translate into very large oscillations on the flux estimate that are often not directly coupled to surface characteristics. A much clearer surface 'signature' emerges when measurements are taken within the surface layer, since the reorganization of turbulent structures that takes place with increasing height will result in a merging of the signature that came from different sources at the surface. This helps to explain some of the poor correlations obtained in Chapter 1 and reinforces the need for a better understanding of the distributions of these tu
18

Structural analysis of airborne flux traces and their link to remote sensing of vegetation and surface temperature

Caramori, Paulo Henrique January 1992 (has links)
No description available.
19

An Investigation of Winter Sensible Heat Fluxes Over Law St. Louis, Montreal, Quebec, Using an Eddy Correlation Technique

Kellman, Lisa Marie January 1992 (has links)
Note:
20

Imaging of fractured rock properties from flow and heat transport : field experiments and inverse modelling / Inversion des données de flux et de température en milieu hétérogène

Klepikova, Maria 16 May 2013 (has links)
La caractérisation de l'agencement spatial des propriétés hydrauliques est essentielle pour prédire les écoulements et le transport des solutés dans les milieux hétérogènes. Les méthodes de tomographie hydraulique, principalement développées pour estimer les propriétés des milieux poreux, n'ont qu'une faible résolution spatiale qui ne reflète pas la vraie hétérogénéité des distributions de fractures des milieux fracturés. Le principal objectif de cette thèse est de développer une nouvelle méthode d'inversion spécifique pour imager les propriétés hydrauliques et de transport des milieux fracturés à l'échelle du site. Pour atteindre ces objectifs, des expériences in situ ainsi qu'une nouvelle approche de modélisation inverse sont proposées, notamment en utilisant la température comme marqueur des écoulements. Nous proposons tout d'abord la tomographie d'écoulement basée sur des tests séquentiels de débimétrie entre puits, comme une nouvelle approche pour caractériser la connectivité des fractures ainsi que leur transmissivité. À partir de simulations numériques reproduisant des cas d'études synthétiques, nous montrons que l'approche par tomographie réduit significativement l'incertitude sur les paramètres estimés, et fournit une caractérisation détaillée du réseau de fracture sans requérir à l'utilisation d'obturateurs hydrauliques. Nous montrons ensuite comment les mesures de température peuvent être utilisées pour quantifier les écoulements dans les milieux fracturés. Le grand intérêt d'utiliser la température est d'obtenir facilement et de façon continue en puits des profils de température. En utilisant un modèle numérique d'écoulement et de transfert de chaleur à l'échelle du puits, une méthode d'inversion pour estimer les vitesses d'écoulement dans le puits à partir des données de température est proposée. Nous couplons ensuite les deux approches présentées précédemment dans une nouvelle approche expérimentale consistant en des enregistrements séquentiels de température dans un puits dans des conditions de pompage entre puits. L'application de cette approche de tomographie en température sur le site de Stang er Brune montre des résultats encourageants pour l'identification du réseau global de connectivité et des zones d'écoulement principales. Enfin, nous discutons de l'intérêt d'utiliser la chaleur comme traceur par rapport à l'utilisation de traceurs classiques. Nous montrons que réaliser des tests de traçage thermiques en milieu fracturé fournit des contraintes supplémentaires importantes sur les propriétés de transport du milieu. / The accurate characterization of distribution of hydraulic properties and connectivity distribution is essential to predict flow and transport in fractured media. Classical approaches were developed for homogeneous aquifers and result in smooth tomograms that often do not match true heterogeneity distribution of fractured media. The main goal of this thesis is to develop new inverse approaches specifically for imaging hydraulic and transport properties in fractured media at the field-scale. To attain this objective new in situ measurement methods as well as new inverse modelling frameworks are proposed.We first propose flow tomography (i.e., sequential cross-borehole flowmeter tests) as a new approach for characterizing fracture connectivity and transmissivities. Based on a discrete fracture network approach, we present a general method to invert flow tomography data. From synthetic case studies, we show that the tomographic approach reduces significantly the uncertainty on the parameter estimation. Flow tomography approach provides detailed characterization on fracture networks without the necessity of using packers. We then study the contribution of temperature measurements for quantifying flow in fractured media. The advantage of using temperature data is that temperature profiles can be obtained more easily and continuously in space, compared to flowmeter profiles. Using a numerical model of flow and heat transfer at the borehole scale, a method to invert temperature measurements to derive borehole flow velocities was proposed. We then couple the two previously proposed approaches in a new experimental approach which we call temperature tomography. This experiment consists of sequential borehole temperature logging under cross-borehole flow conditions. The full inverse framework is then presented to interpret temperature tomography experiments. Application of the temperature tomography approach to Stang er Brune field site showed encouraging results for the identification of general connectivity patterns and transmissivities of the main flowpaths. Finally, we explore the interest of using push-pull thermal tracer tests. Through field experiments and numerical modelling, we demonstrate that conducting push-pull heat tracer tests provide important constraints on the effective transport behavior.

Page generated in 0.0951 seconds