• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evolutionary many-objective optimisation : pushing the boundaries

Li, Miqing January 2015 (has links)
Many-objective optimisation poses great challenges to evolutionary algorithms. To start with, the ineffectiveness of the Pareto dominance relation, which is the most important criterion in multi-objective optimisation, results in the underperformance of traditional Pareto-based algorithms. Also, the aggravation of the conflict between proximity and diversity, along with increasing time or space requirement as well as parameter sensitivity, has become key barriers to the design of effective many-objective optimisation algorithms. Furthermore, the infeasibility of solutions' direct observation can lead to serious difficulties in algorithms' performance investigation and comparison. In this thesis, we address these challenges, aiming to make evolutionary algorithms as effective in many-objective optimisation as in two- or three-objective optimisation. First, we significantly enhance Pareto-based algorithms to make them suitable for many-objective optimisation by placing individuals with poor proximity into crowded regions so that these individuals can have a better chance to be eliminated. Second, we propose a grid-based evolutionary algorithm which explores the potential of the grid to deal with many-objective optimisation problems. Third, we present a bi-goal evolution framework that converts many objectives of a given problem into two objectives regarding proximity and diversity, thus creating an optimisation problem in which the objectives are the goals of the search process itself. Fourth, we propose a comprehensive performance indicator to compare evolutionary algorithms in optimisation problems with various Pareto front shapes and any objective dimensionality. Finally, we construct a test problem to aid the visual investigation of evolutionary search, with its Pareto optimal solutions in a two-dimensional decision space having similar distribution to their images in a higher-dimensional objective space. The work reported in this thesis is the outcome of innovative attempts at addressing some of the most challenging problems in evolutionary many-objective optimisation. This research has not only made some of the existing approaches, such as Pareto-based or grid-based algorithms that were traditionally regarded as unsuitable, now effective for many-objective optimisation, but also pushed other important boundaries with novel ideas including bi-goal evolution, a comprehensive performance indicator and a test problem for visual investigation. All the proposed algorithms have been systematically evaluated against existing state of the arts, and some of these algorithms have already been taken up by researchers and practitioners in the field.
2

Programacão em dois níveis: teoria e algoritmos

Secchin, Leonardo Delarmelina 18 March 2010 (has links)
Made available in DSpace on 2016-12-23T14:33:41Z (GMT). No. of bitstreams: 1 dissertacao.pdf: 1222375 bytes, checksum: 25701e5d822c85de67ae48d04a4d24df (MD5) Previous issue date: 2010-03-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work gives a rigorous approach of bilevel problems, especially the linear case. Proofs of known results in the literature are reproduced or remade. As motivation for the reader, classic problems are reformulated as bilevel problems. In theoretical point of view, some contributions are the formalization of relations between models of literature; their extensions to multilevel problems; the result that complements the equivalence between optimal solutions of the models in linear optimistic case; and the generalization of the method of Calamai and Vicente for generation of linear test problems. In practical point of view, the contribution is a new algorithm for local optimal solutions of linear problems, which differs from other methods in generality: treat unlimited problems, and only requires that the problem s polyhedron does not have degenerate faces. / Este trabalho aborda de forma rigorosa o problema de dois níveis, sobretudo o caso linear. Resultados conhecidos da literatura tiveram suas demonstrações reproduzidas, ou refeitas. Como motivaçãoo para o leitor, formulações de problemas clássicos como problemas de dois níveis foram expostas. No aspecto teórico, destacam-se como contribuições a formalizaçãoo das relações entre os modelos usualmente encontrados na literatura; suas extensões para problemas multinível; o resultado que complementa a equivalência entre soluções ótimas dos modelos para o caso linear otimista; e a generalização do método de Calamai e Vicente para geração de problemas-teste lineares. No aspecto prático, destaca-se o novo método para soluções ótimas locais de problemas lineares, cujo diferencial diante de outros métodos é a generalidade: engloba ilimitabilidade, e exige apenas que o poliedro do problema não tenha faces degeneradas.
3

Bydraes tot die oplossing van die veralgemeende knapsakprobleem

Venter, Geertien 06 February 2013 (has links)
Text in Afikaans / In this thesis contributions to the solution of the generalised knapsack problem are given and discussed. Attention is given to problems with functions that are calculable but not necessarily in a closed form. Algorithms and test problems can be used for problems with closed-form functions as well. The focus is on the development of good heuristics and not on exact algorithms. Heuristics must be investigated and good test problems must be designed. A measure of convexity for convex functions is developed and adapted for concave functions. A test problem generator makes use of this measure of convexity to create challenging test problems for the concave, convex and mixed knapsack problems. Four easy-to-interpret characteristics of an S-function are used to create test problems for the S-shaped as well as the generalised knapsack problem. The in uence of the size of the problem and the funding ratio on the speed and the accuracy of the algorithms are investigated. When applicable, the in uence of the interval length ratio and the ratio of concave functions to the total number of functions is also investigated. The Karush-Kuhn-Tucker conditions play an important role in the development of the algorithms. Suf- cient conditions for optimality for the convex knapsack problem with xed interval lengths is given and proved. For the general convex knapsack problem, the key theorem, which contains the stronger necessary conditions, is given and proved. This proof is so powerful that it can be used to proof the adapted key theorems for the mixed, S-shaped and the generalised knapsack problems as well. The exact search-lambda algorithm is developed for the concave knapsack problem with functions that are not in a closed form. This algorithm is used in the algorithms to solve the mixed and S-shaped knapsack problems. The exact one-step algorithm is developed for the convex knapsack problem with xed interval length. This algorithm is O(n). The general convex knapsack problem is solved by using the pivot algorithm which is O(n2). Optimality cannot be proven but in all cases the optimal solution was found and for all practical reasons this problem will be considered as being concluded. A good heuristic is developed for the mixed knapsack problem. Further research can be done on this heuristic as well as on the S-shaped and generalised knapsack problems. / Mathematical Sciences / D. Phil. (Operasionele Navorsing)
4

Bydraes tot die oplossing van die veralgemeende knapsakprobleem

Venter, Geertien 06 February 2013 (has links)
Text in Afikaans / In this thesis contributions to the solution of the generalised knapsack problem are given and discussed. Attention is given to problems with functions that are calculable but not necessarily in a closed form. Algorithms and test problems can be used for problems with closed-form functions as well. The focus is on the development of good heuristics and not on exact algorithms. Heuristics must be investigated and good test problems must be designed. A measure of convexity for convex functions is developed and adapted for concave functions. A test problem generator makes use of this measure of convexity to create challenging test problems for the concave, convex and mixed knapsack problems. Four easy-to-interpret characteristics of an S-function are used to create test problems for the S-shaped as well as the generalised knapsack problem. The in uence of the size of the problem and the funding ratio on the speed and the accuracy of the algorithms are investigated. When applicable, the in uence of the interval length ratio and the ratio of concave functions to the total number of functions is also investigated. The Karush-Kuhn-Tucker conditions play an important role in the development of the algorithms. Suf- cient conditions for optimality for the convex knapsack problem with xed interval lengths is given and proved. For the general convex knapsack problem, the key theorem, which contains the stronger necessary conditions, is given and proved. This proof is so powerful that it can be used to proof the adapted key theorems for the mixed, S-shaped and the generalised knapsack problems as well. The exact search-lambda algorithm is developed for the concave knapsack problem with functions that are not in a closed form. This algorithm is used in the algorithms to solve the mixed and S-shaped knapsack problems. The exact one-step algorithm is developed for the convex knapsack problem with xed interval length. This algorithm is O(n). The general convex knapsack problem is solved by using the pivot algorithm which is O(n2). Optimality cannot be proven but in all cases the optimal solution was found and for all practical reasons this problem will be considered as being concluded. A good heuristic is developed for the mixed knapsack problem. Further research can be done on this heuristic as well as on the S-shaped and generalised knapsack problems. / Mathematical Sciences / D. Phil. (Operasionele Navorsing)

Page generated in 0.4274 seconds