• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EFFECT OF CLATHRATE STRUCTURE AND PROMOTER ON THE PHASE BEHAVIOUR OF HYDROGEN CLATHRATES

Chapoy, Antonin, Anderson, Ross, Tohidi, Bahman 07 1900 (has links)
Hydrogen is currently considered by many as the “fuel of the future”. It is particularly favoured as a replacement for fossil fuels due to its clean-burning properties; the waste product of combustion being water. While hydrogen is relatively easy to produce, there is currently a lack of practical storage methods for molecular H2, and this is greatly hindering the use of hydrogen as a fuel. Gases are normally stored in vessels under only moderate pressures and in liquid form where possible, which yields the highest energy density. However, to store reasonable quantities of hydrogen in similar volume containers, cryogenic temperatures or extreme pressure are required. Many potential hydrogen storage technologies are currently under investigation, including adsorption on metal hydrides, nanotubes and glass microspheres, and the chemical breakdown of compounds containing hydrogen to release H2. Recent studies have sparked interest in hydrates as a potential hydrogen storage material. The molecular storage of hydrogen in clathrate hydrates could offer significant benefits with regard to ease of formation/regeneration, cost and safety, as compared to other storage materials currently under investigation. Here, we present new experimental hydrate stability data for sII forming hydrogen–water (up to pressures of 180 MPa) and hydrogen–water–tetrahydrofuran systems, the structure-H forming hydrogen–water–methyclycohexane system, and semi-clathrate forming hydrogen–water–tetra-n-butyl ammonium bromide/tetra–n-butyl ammonium fluoride systems.

Page generated in 0.2383 seconds