• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo teórico-experimental de nitroxil e nitroxil complexos em tetraaminas de rutênio(II) / Theoretical-Experimental Study of Nitroxil and Nitroxyl-Complexes in Ruthenium(II) Tetraammines

Augusto Cesar Huppes da Silva 12 December 2016 (has links)
As propriedades da molécula de nitroxil livre e do ligante nitroxil em tetraamminas de Ru(II) (trans-[Ru(NH3)4(nitroxyl)n(L)]2+n, n = carga do nitroxil e L = NH3, py, P(OEt)3, H2O, Cl- and Br-) foram estudadas utilizando-se a teoria do funcional da densidade (DFT). De acordo com as energias calculadas para as conformações dos complexos de HNO, esses são mais estáveis do que os análogos desprotonados e a configuração singleto (trans-1[Ru(NH3)4(L)HNO]2+) é de menor energia em relação a correspondente tripleto <br /> (trans-3[Ru(NH3)4(L)HNO]2. A avaliação dos componentes &sigma; e &pi; na ligação <br /> L-Ru-HNO sugere que o aumento da estabilidade destes orbitais juntamente com o aumento das contribuições dos orbitais HNO estão correlacionacionado a menores valores de distâncias Ru-N(H)O e freqüências inferiores para os estiramentos &nu;NO. A estabilidade da ligação Ru-HNO também foi avaliada através de um estudo cinético teórico da dissociação de HNO a partir de <br /> trans-1[Ru(NH3)4(L)HNO]2+. De acordo com a ordem de estabilidade de ligação Ru-HNO em trans-1[Ru(NH3)4(L)HNO]2+ observa-se a seguinte ordem em função de L: H2O &gt; Cl- ~ Br- &gt; NH3 &gt; py &gt; P(OEt)3, que corresponde à ordem do efeito trans e influência trans medida experimentalmente para a série de L em complexos octaédricos. A mesma tendência foi também observada utilizando o modelo explícito solvente, considerando-se, assim, a presença de uma molécula de H2O juntamente com uma molécula de HNO no estado de transição. Para esta série, as energias calculadas para a ligação Ru-HNO estão no intervalo de 21,4 - 41,5 kcal.mol-1. Observou-se uma boa concordância entre os valores calculados de &Delta;G&dagger; HNO para substituição por H2O a partir do complexo trans-1[Ru(NH3)4(P(OEt)3HNO]2+ (28.5 kcal mol-1) e os dados experimentais disponíveis para reações de substituição em sistemas trans-[Ru(NH3)4(POEt)3(Lx)]2+ (19.4 e 24.0 kcal.mol-1 para Lx = isn e P(OET)3, respectivamente). Experimentos de voltametria cíclica foram realizados observando os processos de redução do ligante nitrosônio gerando nitroxil e podendo gerar amônia, o que foi também observado por cálculos envolvendo efeito de uma primeira esfera de solvatação. / The properties of free nitroxyl molecule and the nitroxyl ligand in Ru(II) tetraammines (trans-[Ru(NH3)4(nitroxyl)n(L)]2+n, n = nitroxyl charge and L = NH3, py, P(OEt)3, H2O, Cl- and Br-) were studied trough density functional theory (DFT). According to the calculated conformation energies the HNO complexes are more stable than the deprotonated analogues and the singlet configuration (trans-1[Ru(NH3)4(L)HNO]2+) is lower energy the than the corresponding triplet (trans-3[Ru(NH3)4(L)HNO]2+). Evaluation of the &sigma; and &pi; components in the L-Ru-HNO bond suggest that increased stability of these orbitals and enhanced contributions from the HNO orbitals correlate to shorter Ru-N(H)O distances and lower &nu;NO stretching frequencies. The stability of the Ru-HNO bond was also evaluated through a theoretical kinetic study on HNO dissociation from trans-1[Ru(NH3)4(L)HNO]2+. Accordingly, the order of the Ru-HNO bonding stability in trans-1[Ru(NH3)4(L)HNO]2+ as a function of L is: H2O &gt; Cl- ~ Br- &gt; NH3 &gt; py &gt; P(OEt)3, which parallels the order of the trans effect and trans influence series experimentally measured for L in octahedral complexes. The same trend was also observed using the explicit solvent model, thus considering the presence of both the HNO and H2O molecules in the transition state. For this series, the calculated bond energies for the Ru-HNO bond are in the range 21.4 to 41.5 kcal.mol-1. Good agreement was observed between the calculated &Delta;G&dagger; values for HNO substitution by H2O from the complex trans-1[Ru(NH3)4(P(OEt)3HNO]2+ (28.5 kcal mol-1) and the available experimental data for substitution reactions of trans-[Ru(NH3)4(POEt)3(Lx)]2+ (19.4 to 24.0 kcal.mol-1 for Lx = isn and P(OET)3, respectively). Cyclic voltammetry experiments were carried out observing the reduction processes of the nitrosonium ligand generating nitroxil and could generate ammonia, which was also observed by calculations involving the effect of a first sphere of solvation.
2

Estudo teórico-experimental de nitroxil e nitroxil complexos em tetraaminas de rutênio(II) / Theoretical-Experimental Study of Nitroxil and Nitroxyl-Complexes in Ruthenium(II) Tetraammines

Silva, Augusto Cesar Huppes da 12 December 2016 (has links)
As propriedades da molécula de nitroxil livre e do ligante nitroxil em tetraamminas de Ru(II) (trans-[Ru(NH3)4(nitroxyl)n(L)]2+n, n = carga do nitroxil e L = NH3, py, P(OEt)3, H2O, Cl- and Br-) foram estudadas utilizando-se a teoria do funcional da densidade (DFT). De acordo com as energias calculadas para as conformações dos complexos de HNO, esses são mais estáveis do que os análogos desprotonados e a configuração singleto (trans-1[Ru(NH3)4(L)HNO]2+) é de menor energia em relação a correspondente tripleto <br /> (trans-3[Ru(NH3)4(L)HNO]2. A avaliação dos componentes &sigma; e &pi; na ligação <br /> L-Ru-HNO sugere que o aumento da estabilidade destes orbitais juntamente com o aumento das contribuições dos orbitais HNO estão correlacionacionado a menores valores de distâncias Ru-N(H)O e freqüências inferiores para os estiramentos &nu;NO. A estabilidade da ligação Ru-HNO também foi avaliada através de um estudo cinético teórico da dissociação de HNO a partir de <br /> trans-1[Ru(NH3)4(L)HNO]2+. De acordo com a ordem de estabilidade de ligação Ru-HNO em trans-1[Ru(NH3)4(L)HNO]2+ observa-se a seguinte ordem em função de L: H2O &gt; Cl- ~ Br- &gt; NH3 &gt; py &gt; P(OEt)3, que corresponde à ordem do efeito trans e influência trans medida experimentalmente para a série de L em complexos octaédricos. A mesma tendência foi também observada utilizando o modelo explícito solvente, considerando-se, assim, a presença de uma molécula de H2O juntamente com uma molécula de HNO no estado de transição. Para esta série, as energias calculadas para a ligação Ru-HNO estão no intervalo de 21,4 - 41,5 kcal.mol-1. Observou-se uma boa concordância entre os valores calculados de &Delta;G&dagger; HNO para substituição por H2O a partir do complexo trans-1[Ru(NH3)4(P(OEt)3HNO]2+ (28.5 kcal mol-1) e os dados experimentais disponíveis para reações de substituição em sistemas trans-[Ru(NH3)4(POEt)3(Lx)]2+ (19.4 e 24.0 kcal.mol-1 para Lx = isn e P(OET)3, respectivamente). Experimentos de voltametria cíclica foram realizados observando os processos de redução do ligante nitrosônio gerando nitroxil e podendo gerar amônia, o que foi também observado por cálculos envolvendo efeito de uma primeira esfera de solvatação. / The properties of free nitroxyl molecule and the nitroxyl ligand in Ru(II) tetraammines (trans-[Ru(NH3)4(nitroxyl)n(L)]2+n, n = nitroxyl charge and L = NH3, py, P(OEt)3, H2O, Cl- and Br-) were studied trough density functional theory (DFT). According to the calculated conformation energies the HNO complexes are more stable than the deprotonated analogues and the singlet configuration (trans-1[Ru(NH3)4(L)HNO]2+) is lower energy the than the corresponding triplet (trans-3[Ru(NH3)4(L)HNO]2+). Evaluation of the &sigma; and &pi; components in the L-Ru-HNO bond suggest that increased stability of these orbitals and enhanced contributions from the HNO orbitals correlate to shorter Ru-N(H)O distances and lower &nu;NO stretching frequencies. The stability of the Ru-HNO bond was also evaluated through a theoretical kinetic study on HNO dissociation from trans-1[Ru(NH3)4(L)HNO]2+. Accordingly, the order of the Ru-HNO bonding stability in trans-1[Ru(NH3)4(L)HNO]2+ as a function of L is: H2O &gt; Cl- ~ Br- &gt; NH3 &gt; py &gt; P(OEt)3, which parallels the order of the trans effect and trans influence series experimentally measured for L in octahedral complexes. The same trend was also observed using the explicit solvent model, thus considering the presence of both the HNO and H2O molecules in the transition state. For this series, the calculated bond energies for the Ru-HNO bond are in the range 21.4 to 41.5 kcal.mol-1. Good agreement was observed between the calculated &Delta;G&dagger; values for HNO substitution by H2O from the complex trans-1[Ru(NH3)4(P(OEt)3HNO]2+ (28.5 kcal mol-1) and the available experimental data for substitution reactions of trans-[Ru(NH3)4(POEt)3(Lx)]2+ (19.4 to 24.0 kcal.mol-1 for Lx = isn and P(OET)3, respectively). Cyclic voltammetry experiments were carried out observing the reduction processes of the nitrosonium ligand generating nitroxil and could generate ammonia, which was also observed by calculations involving the effect of a first sphere of solvation.

Page generated in 0.0895 seconds