• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous yarn felting

Kankesan, S. January 1984 (has links)
No description available.
2

Evaluation of Brassica fibre for textile and spinning properties

Khan, Md Rabiul Islam 13 September 2016 (has links)
Brassica napus L., which is commonly known as canola, is the largest sources of edible oil in Canada. The remaining plant material, such as the stem, remains unused for any immediate application and is returned to the soil for decomposition. An investigation has been conducted to extract, characterize and modify the fibre materials from B. napus stems for textile and apparel applications. In order to find the optimum retting conditions for retting time, four different retting parameters were evaluated including, retting temperature, material liquor ratio, water exchange and the reuse of retted water. It was discovered that the virgin-retted fibres from Brassica plants exhibit most of the required textile properties including dye absorbency, strength, and thermal behaviour. However, the virgin-retted fibres do not exhibit the required spinning (yarn transformation) properties (softness, flexibility and individual fibre entity). In order to modify the Brassica fibres for spinnability, three treatment methods were applied: 1) alkali, acid and softener treatment; 2) pectinase enzyme treatment; and 3) enhanced enzyme treatment. According to Method 5 of the American Association of Textile Chemists and Colorists (AATCC), Brassica fibers obtained from treatments 2 and 3 showed similar spinning properties, and demonstrated superior spinning properties to Brassica fibres obtained from treatment one. To determine the variability of the cultivars upon textile and spinning properties, seeds from twenty different Brassica cultivars consisting of three different species, B. napus, B. juncea L. and B. rapa L., were collected, planted, and harvested upon reaching physiological maturity. The virgin water-retted fibre samples were then treated with pectinase enzyme, and different spinning properties (stiffness, softness, individual fibre entity) and textile properties (fibre decomposition temperature, tenacity and dye absorbency) of enzyme-treated samples were evaluated. The current research suggests that producing fibers from canola stubble and stems could be an additional income source for canola growers. / October 2016
3

Electrically conductive textile coatings with PEDOT:PSS

Åkerfeldt, Maria January 2015 (has links)
In smart textiles, electrical conductivity is often required for several functions, especially contacting (electroding) and interconnecting. This thesis explores electrically conductive textile surfaces made by combining conventional textile coating methods with the intrinsically conductive polymer complex poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). PEDOT:PSS was used in textile coating formulations including polymer binder, ethylene glycol (EG) and rheology modifier. Shear viscometry was used to identify suitable viscosities of the formulations for each coating method. The coating methods were knife coating, pad coating and screen printing. The first part of the work studied the influence of composition of the coating formulation, the amount of coating and the film formation process on the surface resistivity and the surface appearance of knife-coated textiles. The electrical resistivity was largely affected by the amount of PEDOT:PSS in the coating and indicated percolation behaviour within the system. Addition of a high-boiling solvent, i.e. EG, decreased the surface resistivity with more than four orders of magnitude. Studies of tear strength and bending rigidity showed that textiles coated with formulations containing larger amounts of PEDOT:PSS and EG were softer, more ductile and stronger than those coated with formulations containing more binder. The coated textiles were found to be durable to abrasion and cyclic strain, as well as quite resilient to the harsh treatment of shear flexing. Washing increased the surface resistivity, but the samples remained conductive after five wash cycles. The second part of the work focused on using the coatings to transfer the voltage signal from piezoelectric textile fibres; the coatings were first applied using pad coating as the outer electrode on a woven sensor and then as screen-printed interconnections in a sensing glove based on stretchy, warp-knitted fabric. Sensor data from the glove was successfully used as input to a microcontroller running a robot gripper. These applications showed the viability of the concept and that the coatings could be made very flexible and integrated into the textile garment without substantial loss of the textile characteristics. The industrial feasibility of the approach was also verified through the variations of coating methods.

Page generated in 0.088 seconds