• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Categorization of Customer Reviews Using Natural Language Processing / Kategorisering av kundrecensioner med naturlig språkbehandling

Liliemark, Adam, Enghed, Viktor January 2021 (has links)
Databases of user generated data can quickly become unmanageable. Klarna faced this issue, with a database of around 700,000 customer reviews. Ideally, the database would be cleaned of uninteresting reviews and the remaining reviews categorized. Without knowing what categories might emerge, the idea was to use an unsupervised clustering algorithm to find categories. This thesis describes the work carried out to solve this problem, and proposes a solution for Klarna that involves artificial neural networks rather than unsupervised clustering. The implementation done by us is able to categorize reviews as either interesting or uninteresting. We propose a workflow that would create means to categorize reviews not only in these two categories, but in multiple. The method revolved around experimentation with clustering algorithms and neural networks. Previous research shows that texts can be clustered, however, the datasets used seem to be vastly different from the Klarna dataset. The Klarna dataset consists of short reviews and contain a large amount of uninteresting reviews. Using unsupervised clustering yielded unsatisfactory results, as no discernible categories could be found. In some cases, the technique created clusters of uninteresting reviews. These clusters were used as training data for an artificial neural network, together with manually labeled interesting reviews. The results from this artificial neural network was satisfactory; it can with an accuracy of around 86% say whether a review is interesting or not. This was achieved using the aforementioned clusters and five feedback loops, where the model’s wrongfully predicted reviews from an evaluation dataset was fed back to it as training data. We argue that the main reason behind why unsupervised clustering failed is that the length of the reviews are too short. In comparison, other researchers have successfully clustered text data with an average length in the hundreds. These items pack much more features than the short reviews in the Klarna dataset. We show that an artificial neural network is able to detect these features despite the short length, through its intrinsic design. Further research in feature extraction of short text strings could provide means to cluster this kind of data. If features can be extracted, the clustering can thus be done on the features rather than the actual words. Our artificial neural network shows that the arbitrary features interesting and uninteresting can be extracted, so we are hopeful that future researchers will find ways of extracting more features from short text strings. In theory, this should mean that text of all lengths can be clustered unsupervised. / Databaser med användargenererad data kan snabbt bli ohanterbara. Klarna stod inför detta problem, med en databas innehållande cirka 700 000 recensioner från kunder. De såg helst att databasen skulle rensas från ointressanta recensioner och att de kvarvarande kategoriseras. Eftersom att kategorierna var okända initialt, var tanken att använda en oövervakad grupperingsalgoritm. Denna rapport beskriver det arbete som utfördes för att lösa detta problem, och föreslår en lösning till Klarna som involverar artificiella neurala nätverk istället för oövervakad gruppering. Implementationen skapad av oss är kapabel till att kategorisera recensioner som intressanta eller ointressanta. Vi föreslår ett arbetsflöde som skulle skapa möjlighet att kategorisera recensioner inte bara i dessa två kategorier, utan i flera. Metoden kretsar kring experimentering med grupperingsalgoritmer och artificiella neurala nätverk. Tidigare forskning visar att texter kan grupperas oövervakat, dock med ingångsdata som väsentligt skiljer sig från Klarnas data. Recensionerna i Klarnas data är generellt sett korta och en stor andel av dem kan ses som ointressanta. Oövervakad grupperingen gav otillräckliga resultat, då inga skönjbara kategorier stod att finna. I vissa fall skapades grupperingar av ointressanta recensioner. Dessa användes som träningsdata för ett artificiellt neuralt nätverk. Till träningsdatan lades intressanta recensioner som tagits fram manuellt. Resultaten från detta var positivt; med en träffsäkerhet om cirka 86% avgörs om en recension är intressant eller inte. Detta uppnåddes genom den tidigare skapade träningsdatan samt fem återkopplingsprocesser, där modellens felaktiga prediktioner av evalueringsdata matades in som träningsdata. Vår uppfattning är att den korta längden på recensionerna gör att den oövervakade grupperingen inte fungerar. Andra forskare har lyckats gruppera textdata med snittlängder om hundratals ord per text. Dessa texter rymmer fler meningsfulla enheter än de korta recensionerna i Klarnas data. Det finns lösningar som innefattar artificiella neurala nätverk å andra sidan kan upptäcka dessa meningsfulla enheter, tack vare sin grundläggande utformning. Vårt arbete visar att ett artificiellt neuralt nätverk kan upptäcka dessa meningsfulla enheter, trots den korta längden per recension. Extrahering av meningsfulla enheter ur korta texter är ett ¨ämne som behöver mer forskning för att underlätta problem som detta. Om meningsfulla enheter kan extraheras ur texter, kan grupperingen göras på dessa enheter istället för orden i sig. Vårt artificiella neurala nätverk visar att de arbiträra enheterna intressant och ointressant kan extraheras, vilket gör oss hoppfulla om att framtida forskare kan finna sätt att extrahera fler enheter ur korta texter. I teorin innebär detta att texter av alla längder kan grupperas oövervakat.

Page generated in 0.0765 seconds