• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Learning to segment texture in 2D vs. 3D : A comparative study

Oh, Se Jong 15 November 2004 (has links)
Texture boundary detection (or segmentation) is an important capability of the human visual system. Usually, texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D substrate. However, an interesting hypothesis emerges when we ask a question regarding the nature of textures: What are textures, and why did the ability to discriminate texture evolve or develop? A possible answer to this question is that textures naturally define physically distinct surfaces or objects, thus, we can hypothesize that 2D texture segmentation may be an outgrowth of the ability to discriminate surfaces in 3D. In this thesis, I investigated the relative difficulty of learning to segment textures in 2D vs. 3D configurations. It turns out that learning is faster and more accurate in 3D, very much in line with what was expected. Furthermore, I have shown that the learned ability to segment texture in 3D transfers well into 2D texture segmentation, but not the other way around, bolstering the initial hypothesis, and providing an alternative approach to the texture segmentation problem.
2

Learning to segment texture in 2D vs. 3D : A comparative study

Oh, Se Jong 15 November 2004 (has links)
Texture boundary detection (or segmentation) is an important capability of the human visual system. Usually, texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D substrate. However, an interesting hypothesis emerges when we ask a question regarding the nature of textures: What are textures, and why did the ability to discriminate texture evolve or develop? A possible answer to this question is that textures naturally define physically distinct surfaces or objects, thus, we can hypothesize that 2D texture segmentation may be an outgrowth of the ability to discriminate surfaces in 3D. In this thesis, I investigated the relative difficulty of learning to segment textures in 2D vs. 3D configurations. It turns out that learning is faster and more accurate in 3D, very much in line with what was expected. Furthermore, I have shown that the learned ability to segment texture in 3D transfers well into 2D texture segmentation, but not the other way around, bolstering the initial hypothesis, and providing an alternative approach to the texture segmentation problem.

Page generated in 0.1107 seconds