• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability Analysis of Method of Foundamental Solutions for Laplace's Equations

Huang, Shiu-ling 21 June 2006 (has links)
This thesis consists of two parts. In the first part, to solve the boundary value problems of homogeneous equations, the fundamental solutions (FS) satisfying the homogeneous equations are chosen, and their linear combination is forced to satisfy the exterior and the interior boundary conditions. To avoid the logarithmic singularity, the source points of FS are located outside of the solution domain S. This method is called the method of fundamental solutions (MFS). The MFS was first used in Kupradze in 1963. Since then, there have appeared numerous reports of MFS for computation, but only a few for analysis. The part one of this thesis is to derive the eigenvalues for the Neumann and the Robin boundary conditions in the simple case, and to estimate the bounds of condition number for the mixed boundary conditions in some non-disk domains. The same exponential rates of Cond are obtained. And to report numerical results for two kinds of cases. (I) MFS for Motz's problem by adding singular functions. (II) MFS for Motz's problem by local refinements of collocation nodes. The values of traditional condition number are huge, and those of effective condition number are moderately large. However, the expansion coefficients obtained by MFS are scillatingly large, to cause another kind of instability: subtraction cancellation errors in the final harmonic solutions. Hence, for practical applications, the errors and the ill-conditioning must be balanced each other. To mitigate the ill-conditioning, it is suggested that the number of FS should not be large, and the distance between the source circle and the partial S should not be far, either. In the second part, to reduce the severe instability of MFS, the truncated singular value decomposition(TSVD) and Tikhonov regularization(TR) are employed. The computational formulas of the condition number and the effective condition number are derived, and their analysis is explored in detail. Besides, the error analysis of TSVD and TR is also made. Moreover, the combination of TSVD and TR is proposed and called the truncated Tikhonov regularization in this thesis, to better remove some effects of infinitesimal sigma_{min} and high frequency eigenvectors.
2

The Method of Fundamental Solutions for 2D Helmholtz Equation

Lo, Lin-Feng 20 June 2008 (has links)
In the thesis, the error and stability analysis is made for the 2D Helmholtz equation by the method of fundamental solutions (MFS) using both Bessel and Neumann functions. The bounds of errors in bounded simply-connected domains are derived, while the bounds of condition number are derived only for disk domains. The MFS using Bessel functions is more efficient than the MFS using Neumann functions. Interestingly, for the MFS using Bessel functions, the radius R of the source points is not necessarily larger than the maximal radius r_max of the solution domain. This is against the traditional condition: r_max < R for MFS. Numerical experiments are carried out to support the analysis and conclusions made.
3

The Trefftz Method using Fundamental Solutions and Particular Solutions for Exterior and Annular Problems of Laplace's Equation

Lin, Wei-ling 20 June 2008 (has links)
Most of reports deal with bounded simply-connected domains; only a few involve in exterior and annular problems (Chen et al. [3], Katsuroda[10] and Ushijima and Chibu [30]). For exterior problems of Laplace's equations, there exist two kinds of infinity conditions, (1) |u|≤C and (2) u=O( ln r), which must be complied with by the fundamental solutions chosen. For u=O(ln r), the traditional fundamental solutions can be used. However, for |u|≤C, new fundamental solutions are explored, with a brief error analysis. Numerical experiments are carried out to verify the theoretical analysis made. Numerical experiments are also provided for annular domains, to show that the method of fundamental solutions (MFS) is inferior to the method of particular solutions (MPS), in both accuracy and stability. MFS and MPS are classified into the Trefftz method (TM) using fundamental solutions (FS) and particular solutions (PS), respectively. The remarkable advantage of MFS over MPS is the uniform $ln|overline{PQ_i}|$, to lead to simple algorithms and programming, thus to save a great deal of human power. Hence, we may reach the engineering requirements by much less efforts and a little payment. Besides, the crack singularity in unbounded domain is also studied. A combination of both PS and FS is also employed, called combination of MFS. The numerical results of MPS and combination of MFS are coincident with each other. The study in this thesis may greatly extend the application of MFS from bounded simply-connected domains to other more complicated domains.
4

The method of fundamental solution for Laplace's equation in 3D

Chi, Ya-Ting 09 July 2009 (has links)
For the method of fundamental solutions(MFS), many reports deal with 2D problems. Since the MFS is more advantageous for 3D problems, this thesis is devoted to Laplace's equation in 3D problems. Since the fundamental solutions(FS) £X(x,y)=1/(4£k||x-y||), x,y∈R^3 are known, the location of source points is important in real computation. In this thesis, we choose a cylinder as the solution domain, and the source points on larger cylinders and spheres. Numerical results are reported, to draw some useful conclusions. The theoretical analysis will be explored in the future.
5

Modélisation et simulation des interfaces non classiques dans l’écoulement de Stokes et dans les composites élastiques fibreux / Modeling and simulation of non-classical interfaces in Stokes flow and the elastic fibrous composites

Tran, Anh-Tuan 01 December 2014 (has links)
Ce travail de thèse, constitué de deux parties apparemment très différentes, a pour objectif commun de modéliser et simuler certaines interfaces non classiques en mécanique des fluides et en mécanique des solides. Dans la première partie qu'est la partie principale du travail, l'écoulement de Stokes d'un fluide dans un canal encadré par deux parois solides parallèles est étudié. La surface d'une paroi étant supposée lisse, la condition d'adhérence parfaite classique est adoptée pour l'interface fluide-solide homogène correspondante. La surface de l'autre paroi étant supposée rugueuse et capable de piéger de petites poches d'air, l'interface liquide-solide correspondante est donc hétérogène. La première partie de ce travail consiste à homogénéiser l'interface liquide-solide hétérogène de façon à remplacer cette dernière par une interface fluide-solide homogène imparfaite caractérisée par une longueur de glissement effective. Le problème essentiel de déterminer la longueur de glissement effective est résolu par le développement : (i) d'une approche semi-analytique dans le cas où la surface rugueuse est périodique; (ii) d'une approche basée sur la méthode de solution fondamentale dans le cas où la surface rugueuse est aléatoire. Les résultats obtenus par les approches développées sont systématiquement comparés avec ceux délivrés par la méthode des éléments finis. La deuxième partie du travail est de déterminer les modules élastiques effectifs d'un composite fibreux dans lequel les interfaces entre la matrice et les fibres sont imparfaites et décrites par le modèle membranaire. Une méthode numérique efficace basée sur la transformée de Fourier est ainsi développée et implantée pour traiter le cas général où la section d'une fibre peut avoir une forme quelconque / The present work, consisting of two seemingly very different parties, aims at modeling and simulating some non-classical interfaces in fluid mechanics and solid mechanics. In the first part which is the main part of the work, the Stokes flow of a fluid in a channel bounded by two parallel solid walls is studied. The surface of a solid wall being assumed to be smooth, the classic perfect adherence condition is adopted for the corresponding homogeneous fluid-solid interface. The surface of the other wall being taken to be rough and capable of trapping small pockets of air, the corresponding liquid-solid interface is heterogeneous. The first part of this work is to homogenize the heterogeneous liquid-solid interface so as to replace it by an imperfect homogeneous fluid-solid interface characterized by an effective slip length. The essential underlying problem of determining the effective slip length is achieved by developing: (i) a semi-analytical approach when the rough surface is periodic; (ii) an approach based on the fundamental solution method when the surface is randomly rough. The results obtained by the developed approaches are systematically compared with those issued from the finite element method. The second part of the work is to determine the effective elastic moduli of a fiber composite in which the interfaces between the matrix and fibers are imperfect and described by the membrane model. An efficient numerical method based on the fast Fourier transform is developed and implemented to treat the general case where the section of a fiber can be of any shape
6

Models of Corner and Crack Singularity of Linear Elastostatics and their Numerical Solutions

Chu, Po-chun 23 August 2010 (has links)
The singular solutions for linear elastostatics at corners are essential in both theory and computation. In this thesis, we seek new singular solutions for corners with the fixed (displacement), the free stress (traction) boundary conditions, and their mixed types, and to explore their corner singularity and provide the algorithms and error estimates in detail. The singular solutions of linear elastostatics are derived, and a number of new models of corner and crack singularity are proposed. Effective numerical methods, such as the collocation Trefftz methods (CTM), the method of fundamental solutions (MFS), the method of particular solutions (MPS) and their combinations: the so called combined method, are developed. Such solutions are useful to examine other numerical methods for singularity problems in linear elastostatics. This thesis consists of three parts, Part I: Basic approaches, Part II: Advanced topics, and Part III: Mixed types of displacement and traction conditions. Contents of Parts I and II have been published in [47,82]. In Part I, the collocation Trefftz methods are used to obtain highly accurate solutions, where the leading coefficient has 14 (or 13) significant digits by the computation with double precision. In part II, two more new models (symmetric and anti-symmetric) of interior crack singularities are proposed, for the corner and crack singularity problems, the combined methods by using many fundamental solutions, but by adding a few singular solutions are proposed. Such a kind of combined methods is significant for linear elastostatics with corners (i.e., the L-shaped domain), because the singular solutions can only be obtained by seeking the power £hk of r£hk numerically. Hence, only a few singular solutions used may greatly simplify the numerical algorithms; Part III is a continued study of Parts I and II, to explore mixed type of displacement and free traction boundary conditions. To our best knowledge, this is the first time to provide the particular solutions near the corner with mixed types of boundary conditions and to report their numerical computation with different boundary conditions on the same corner edge in linear elastostatics. This thesis explores corner singularity and its numerical methods, to form a systematic study of basic theory and advanced computation for linear elastostatics.
7

Méthodes de régularisation évanescente pour la complétion de données / Fading regularization methods for data completion

Caille, Laetitia 25 October 2018 (has links)
Les problèmes de complétion de données interviennent dans divers domaines de la physique, tels que la mécanique, l'acoustique ou la thermique. La mesure directe des conditions aux limites se heurte souvent à l'impossibilité de placer l'instrumentation adéquate. La détermination de ces données n'est alors possible que grâce à des informations complémentaires. Des mesures surabondantes sur une partie accessible de la frontière mènent à la résolution d'un problème inverse de type Cauchy. Cependant, dans certains cas, des mesures directes sur la frontière sont irréalisables, des mesures de champs plus facilement accessibles permettent de pallier ce problème. Cette thèse présente des méthodes de régularisation évanescente qui permettent de trouver, parmi toutes les solutions de l'équation d'équilibre, la solution du problème de complétion de données qui s'approche au mieux des données de type Cauchy ou de champs partiels. Ces processus itératifs ne dépendent pas d'un coefficient de régularisation et sont robustes vis à vis du bruit sur les données, qui sont recalculées et de ce fait débruitées. Nous nous intéressons, dans un premier temps, à la résolution de problèmes de Cauchy associés à l'équation d'Helmholtz. Une étude numérique complète est menée, en utilisant la méthode des solutions fondamentales en tant que méthode numérique pour discrétiser l'espace des solutions de l'équation d'Helmholtz. Des reconstructions précises attestent de l'efficacité et de la robustesse de la méthode. Nous présentons, dans un second temps, la généralisation de la méthode de régularisation évanescente aux problèmes de complétion de données à partir de mesures de champs partielles. Des simulations numériques, pour l'opérateur de Lamé, dans le cadre des éléments finis et des solutions fondamentales, montrent la capacité de la méthode à compléter et débruiter des données partielles de champs de déplacements et à identifier les conditions aux limites en tout point de la frontière. Nous retrouvons des reconstructions précises et un débruitage efficace des données lorsque l'algorithme est appliqué à des mesures réelles issues de corrélation d'images numériques. Un éventuel changement de comportement du matériau est détecté grâce à l'analyse des résidus de déplacements. / Data completion problems occur in many engineering fields, such as mechanical, acoustical and thermal sciences. Direct measurement of boundary conditions is often confronting with the impossibility of placing the appropriate instrumentation. The determination of these data is then possible only through additional informations. Overprescribed measurements on an accessible part of the boundary lead to the resolution of an inverse Cauchy problem. However, in some cases, direct measurements on the boundary are inaccessible, to overcome this problem field measurements are more easily accessible. This thesis presents fading regularization methods that allow to find, among all the solutions of the equilibrium equation, the solution of the data completion problem which fits at best Cauchy or partial fields data. These iterative processesdo not depend on a regularization coefficient and are robust with respect to the noise on the data, which are recomputed and therefore denoised. We are interested initially in solving Cauchy problems associated with the Helmholtz equation. A complete numerical study is made, usingthe method of fundamental solutions as a numerical method for discretizing the space of the Helmholtz equation solutions. Accurate reconstructions attest to the efficiency and the robustness of the method. We present, in a second time, the generalization of the fading regularization method to the data completion problems from partial full-field measurements. Numerical simulations, for the Lamé operator, using the finite element method or the method of fundamental solutions, show the ability of the iterative process to complete and denoise partial displacements fields data and to identify the boundary conditions at any point. We find precise reconstructions and efficient denoising of the data when the algorithm is applied to real measurements from digital image correlation. A possible change in the material behavior is detected thanks to the analysis of the displacements residuals.
8

Development of Boundary Singularity Method for Partial-Slip and Transition Molecular-Continuum Flow Regimes with Application to Filtration

Zhao, Shunliu 01 September 2009 (has links)
No description available.

Page generated in 0.1636 seconds