• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Star cocircularities of knots

Flowers, Garret 15 July 2011 (has links)
The study of knot invariants is a large and active area of research in the field of knot theory. In the early 1990s, Russian mathematican Victor Vassiliev developed a series of numerical knot invariants, now known as Vassiliev invariants. These invariants have sparked a great deal of interest in the mathematical community, and it is conjectured that, together, they formulate a complete knot invariant. The computation of these invariants is largely algebraic, and unfortunately the values do not appear to describe any intrinsic properties of the knot. In this thesis, a geometric interpretation of the second Vassiliev invariant is provided by examining occurrances of five distinct points on the knot that lie on a common circle in the ambient space. This process is then extended to include an analysis of six-point cocircularities of knots as well. / Graduate

Page generated in 0.0415 seconds