Spelling suggestions: "subject:"theoretical foundation""
1 |
Towards Theoretical Foundations of ClusteringAckerman, Margareta January 2012 (has links)
Clustering is a central unsupervised learning task with a wide variety of applications. Unlike in supervised learning, different clustering algorithms may yield dramatically different outputs for the same input sets. As such, the choice of algorithm is crucial. When selecting a clustering algorithm, users tend to focus on cost-related considerations, such as running times, software purchasing costs, etc. Yet differences concerning the output of the algorithms are a more primal consideration. We propose an approach for selecting clustering algorithms based on differences in their input-output behaviour. This approach relies on identifying significant properties of clustering algorithms and classifying algorithms based on the properties that they satisfy.
We begin with Kleinberg's impossibility result, which relies on concise abstract properties that are well-suited for our approach. Kleinberg showed that three specific properties cannot be satisfied by the same algorithm. We illustrate that the impossibility result is a consequence of the formalism used, proving that these properties can be formulated without leading to inconsistency in the context of clustering quality measures or algorithms whose input requires the number of clusters.
Combining Kleinberg's properties with newly proposed ones, we provide an extensive property-base classification of common clustering paradigms. We use some of these properties to provide a novel characterization of the class of linkage-based algorithms. That is, we distil a small set of properties that uniquely identify this family of algorithms.
Lastly, we investigate how the output of algorithms is affected by the addition of small, potentially adversarial, sets of points. We prove that given clusterable input, the output of $k$-means is robust to the addition of a small number of data points. On the other hand, clusterings produced by many well-known methods, including linkage-based techniques, can be changed radically by adding a small number of elements.
|
2 |
Towards Theoretical Foundations of ClusteringAckerman, Margareta January 2012 (has links)
Clustering is a central unsupervised learning task with a wide variety of applications. Unlike in supervised learning, different clustering algorithms may yield dramatically different outputs for the same input sets. As such, the choice of algorithm is crucial. When selecting a clustering algorithm, users tend to focus on cost-related considerations, such as running times, software purchasing costs, etc. Yet differences concerning the output of the algorithms are a more primal consideration. We propose an approach for selecting clustering algorithms based on differences in their input-output behaviour. This approach relies on identifying significant properties of clustering algorithms and classifying algorithms based on the properties that they satisfy.
We begin with Kleinberg's impossibility result, which relies on concise abstract properties that are well-suited for our approach. Kleinberg showed that three specific properties cannot be satisfied by the same algorithm. We illustrate that the impossibility result is a consequence of the formalism used, proving that these properties can be formulated without leading to inconsistency in the context of clustering quality measures or algorithms whose input requires the number of clusters.
Combining Kleinberg's properties with newly proposed ones, we provide an extensive property-base classification of common clustering paradigms. We use some of these properties to provide a novel characterization of the class of linkage-based algorithms. That is, we distil a small set of properties that uniquely identify this family of algorithms.
Lastly, we investigate how the output of algorithms is affected by the addition of small, potentially adversarial, sets of points. We prove that given clusterable input, the output of $k$-means is robust to the addition of a small number of data points. On the other hand, clusterings produced by many well-known methods, including linkage-based techniques, can be changed radically by adding a small number of elements.
|
3 |
Multiple Oppositions: Theoretical Foundations for an Alternative Contrastive Intervention ApproachWilliams, A. Lynn 01 November 2000 (has links)
Abstract
A multiple opposition approach to phonological intervention is described as an alternative contrastive approach for the treatment of severe speech disorders in children. The development and theoretical constructs of this approach are presented within the context of a clinical case study. The multiple opposition approach is based on the premise that the systemic level of phonological organization is essential in the description and intervention of disordered sound systems. Phonological descriptions identify phoneme collapses, which are viewed as phonologic strategies developed by the child to accommodate a limited sound system relative to the full adult system of the ambient language. Intervention is then directed systemically across the child’s entire rule, or collapse, by using larger treatment sets of multiple oppositions rather than by one contrast at a time.
|
Page generated in 0.1454 seconds