• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model-Based Control Development for an Advanced Thermal Management System for Automotive Powertrains

Merical, Kyle I. 09 August 2013 (has links)
No description available.
2

Thermal Analysis of Lithium-Ion Battery Packs and Thermal Management Solutions

Bhatia, Padampat Chander 28 August 2013 (has links)
No description available.
3

ANALYSIS OF HEAT-SPREADING THERMAL MANAGEMENT SOLUTIONS FOR LITHIUM-ION BATTERIES

Khasawneh, Hussam Jihad 20 October 2011 (has links)
No description available.
4

Component-led integrative optimisation methodology for avionic thermal management

Jones, Andy January 2017 (has links)
The modern military aircraft can be defined as a System of Systems (SoS); several distinct systems operating simultaneously across boundary interfaces. As the on-board subsystems have become more complex and diverse, the development process has become more isolated. When considering thermal management of distributed heat loads, the aircraft has become a collection of individually optimised components and subsystems, rather than the implementation of a single system to perform a given task. Avionic thermal management is quickly becoming a limiting factor of aircraft performance, reliability and effectiveness. The challenge of avionic thermal management is growing with the increasing complexity and power density of avionic packages. The aircraft relies on a heat rejection growth capacity to accommodate the additional through-life avionic heat loads. Growth capacity is defined as an allowable thermal loading growth designed into the system by the underutilisation of spatial and cooling supply at aircraft introduction; however, this is a limited resource and aircraft subsystem cooling capability is reaching a critical point. The depleted growth capacity coupled with increased avionic power demands has led to component thermal failure. However, due to the poor resolution of existing data acquisition, experimental facilities or thermodynamic modeling, the exact inflight-operating conditions remain relatively unknown. The knowledge gap identified in this work is the lack of definitive methodology to generate high fidelity data of in-flight thermal conditions of fast-jet subsystems and provide evidence towards effective future thermal management technologies. It is shown that, through the development of a new methodology, the knowledge gap can be reduced and as an output of this approach the unknown system behaviour can be defined. A multidisciplinary approach to the replication, analysis and optimisation of a fast-jet TMS is detailed. The development of a new Ground Test Facility (GTF) allows previously unidentified system thermal behaviour to be evaluated at component, subsystem and system level. The development of new data to characterise current thermal performance of a fast jet TMS allows recommendations of several new technologies to be implemented through a component led integrative system optimisation. This approach is to consider the TMS as a single system to achieve a single goal of component thermal management. Three technologies are implemented to optimise avionic conditions through the minimisation of bleed air consumption, improve avionic reliability through increased avionic component isothermalisation and increase growth capacity through improved avionic heat exchanger fin utilisation. These component level technologies improved system level performance. A reduction in TMS bleed air consumption from 1225kg to 510kg was found to complete a typical flight profile. A peak predicted aircraft specific fuel consumption saving of 1.23% is seen at a cruise flight condition because of this approach to avionic thermal management.
5

AN EXERGETIC APPROACH TO AIRCRAFT THERMAL MANAGEMENT SYSTEM ANALYSIS AND DESIGN OPTIMIZATION

Marcin Glebocki (13140390) 22 July 2022 (has links)
<p> Design and optimization of aircraft thermal management systems (TMS) is typically conducted by considering a single system architecture at steady-state conditions, using per?formance metrics such as bleed air flow rate, fuel burn flow rate, or total system mass. However, when trying to increase the overall performance of a legacy system or analyzing new system architectures, it can be difficult to identify how individual component or sub?system changes will propagate throughout the overall TMS. In this thesis, new knowledge and tools are presented that will advance the use of exergy-based design techniques for next generation aircraft thermal management systems (TMS). This is motivated by the fact that exergy destruction is a quantity that can be calculated for any subsystem or component, regardless of energy domain or function. The relationship between exergy destruction min?imization (EDM) and conventional design metrics is investigated and quantified. This is performed through the use of a steady-state analysis and by leveraging a high fidelity model of a complex TMS. It is shown that exergy destruction is not only sensitive to individual component parameters in a manner consistent with conventional performance metrics, but that due to its generalizability, it also captures how changes in one subsystem propagate throughout the overall TMS. Specifically, through a design case study, it is shown that minimizing system-wide exergy destruction rate (without an engine model) yields a similar engine fuel burn rate as when fuel burn is minimized directly, but also results in a signif?icantly lower system mass. Building on these results, a transient design and analysis tool for TMS is developed using a graph theoretic approach. The tool is used on a case study of an air cycle machine (ACM) and on an architecture enumeration case study for a notional TMS. The transient exergy-based analysis is shown to provide insight into how efficiently energy is used at a component level, and captures the differences in thermal performance between architectures. </p>
6

TERMISKT SMARTA HANTERINGSSYSTEM FÖR LITIUMJONBATTERIER : Analys av litium-jonbatteriets termiska beteende

Kohont, Alexander, Isik, Roger Can January 2021 (has links)
Batteries play an important role in a sustainable future. As the development for better andsmarter batteries continues, new areas of use emerge boosting its demand. Controlling thetemperature of a battery cell is a vital objective to ensure its longevity and performance. Bothcooling and heating methods can be applied to keep the temperature within a certain rangedepending on its need. This study will review the technical aspects of lithium-ion batteries,observe the different thermal management systems and cooling methods, and lastly examinethe required cooling flow needed for a battery cell to prevent its temperature from rising tocritical levels during its discharge. Using CFD ANSYS Fluent as a simulation tool, the resultsshow that different charging rates, in terms of C-rate, require different rates of mass flow tocontrol the temperature. Simulating the cell with natural convection, the cell peaks at hightemperatures even at lower C-rates, reaching up to 36,4°C and 48,8°C for 1C and 2C,respectively. Applying the cooling method with a flow rate of 0,0077kg/s reduces thetemperature significantly, resulting in temperatures of 26,95°C and 31,27°C for 1C and 2C,respectively.
7

DUAL PURPOSE COOLING PLATES FOR THERMAL MANAGEMENT OF LI-ION BATTERIES DURING NORMAL OPERATION AND THERMAL RUNAWAY

Mohammed, Abdul Haq 11 June 2018 (has links)
No description available.
8

Design, Control, and Validation of a Transient Thermal Management System with Integrated Phase-Change Thermal Energy Storage

Michael Alexander Shanks (14216549) 06 December 2022 (has links)
<p>An emerging technology in the field of transient thermal management is thermal energy storage, or TES, which enables temporary, on-demand heat rejection via storage as latent heat in a phase-change material.  Latent TES devices have enabled advances in many thermal management applications, including peak load shifting for reducing energy demand and cost of HVAC systems and providing supplemental heat rejection in transient thermal management systems.  However, the design of a transient thermal management system with integrated storage comprises many challenges which are yet to be solved.  For example, design approaches and performance metrics for determining the optimal dimensions of the TES device have only recently been studied.  Another area of active research is estimation of the internal temperature state of the device, which can be difficult to directly measure given the transient nature of the thermal storage process.  Furthermore, in contrast to the three main functions of a thermal-fluid system--heat addition, thermal transport, and heat rejection--thermal storage introduces the need for active, real-time control and automated decision making for managing the operation of the thermal storage device. </p> <p>In this thesis, I present the design process for integrating thermal energy storage into a single-phase thermal management system for rejecting transient heat loads, including design of the TES device, state estimation and control algorithm design, and validation in both simulation and experimental environments. Leveraging a reduced-order finite volume simulation model of a plate-fin TES device, I develop a design approach which involves a transient simulation-based design optimization to determine the required geometric dimensions of the device to meet transient performance objectives while maximizing power density.  The optimized TES device is integrated into a single-phase thermal-fluid testbed for experimental testing.  Using the finite volume model and feedback from thermocouples embedded in the device, I design and experimentally validate a state estimator based on the state-dependent Riccati equation approach for determining the internal temperature distribution to a high degree of accuracy.  Real-time knowledge of the internal temperature state is critical for making control decisions; to manage the operation of the TES device in the context of a transient thermal management system, I design and test, both in simulation and experimentally, a logic-based control strategy that uses fluid temperature measurements and estimates of the TES state to make real-time control decisions to meet critical thermal management objectives. Together, these advances demonstrate the potential of thermal energy storage technology as a component of thermal management systems and the feasibility of logic-based control strategies for real-time control of thermal management objectives.</p>

Page generated in 0.0923 seconds