1 |
Differences in Thermal Quality Affect Investment in Thermoregulation by LizardsLymburner, Alannah 29 April 2019 (has links)
Body temperature affects physiological processes and, consequently, has a large impact on fitness. Lizards need to thermoregulate behaviourally to maintain their body temperature within a range that maximizes performance, but there are costs associated with thermoregulation. The thermal quality of an environment is a major cost of thermoregulation because it directly affects the time and energy that must be invested by an individual to achieve and maintain an optimal body temperature for performance. According to the cost-benefit model of thermoregulation, lizards should only thermoregulate when the benefits outweigh the costs of doing so. Thus, in habitats of poor thermal quality, individuals should thermoregulate less. Using two systems, an elevational gradient and a pair of habitats that vary in the amount of solar radiation they receive, I tested the hypothesis that investment in thermoregulation by lizards is dictated by the associated costs of thermoregulating. Temperature, and thus thermal quality, decreases with elevation. I found a significant positive relationship between elevation and effectiveness of thermoregulation of Yarrow’s spiny lizards (Sceloporus jarrovii). When comparing thermoregulation of ornate tree lizards (Urosaurus ornatus) living in the thermally superior open-canopy wash habitat or the closed-canopy upland habitat, I found that habitat type was a significant predictor of accuracy of body temperature. In the poorer quality habitat, lizards had smaller deviations of body temperature from their preferred temperature range. Overall, I conclude that the thermal quality of a lizards’ environment impacts their thermoregulation in the opposite direction than predicted by the cost-benefit model of thermoregulation. This suggests that the disadvantages of thermoconformity may be greater than the costs thermoregulating as habitats become more thermally challenging.
|
2 |
Avaliação da qualidade térmica de espaços de transição do tipo linear externo / Thermal quality evaluation of linear external transitional spaceDavid, Priscilla Laceda Duarte [UNESP] 19 February 2016 (has links)
Submitted by Priscilla Lacerda Duarte David null (pridavid@gmail.com) on 2016-04-18T17:32:38Z
No. of bitstreams: 1
DISSERTAÇÃO.pdf: 3221424 bytes, checksum: eae44cc8b6d04e771aaafa4496e5e231 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-19T14:16:13Z (GMT) No. of bitstreams: 1
david_pld_me_bauru.pdf: 3221424 bytes, checksum: eae44cc8b6d04e771aaafa4496e5e231 (MD5) / Made available in DSpace on 2016-04-19T14:16:13Z (GMT). No. of bitstreams: 1
david_pld_me_bauru.pdf: 3221424 bytes, checksum: eae44cc8b6d04e771aaafa4496e5e231 (MD5)
Previous issue date: 2016-02-19 / Essa pesquisa investiga as relações entre a qualidade térmica dos espaços de transição com os seus atributos físicos e condições térmicas do entorno imediato, a partir de levantamentos microclimáticos em oito espaços de transição do tipo linear externo e nos espaços internos e externos a eles associados, em condições de tempo quente. Os espaços escolhidos estão inseridos em um ambiente universitário na cidade de Bauru-SP e, por estarem localizados em edifícios de salas de aula, constituem em importantes ambientes de convívio de estudantes. Para verificar a influência dos atributos projetuais, foram definidos parâmetros de avaliação (intensidade da radiação solar incidente, obstrução do entorno, relação altura (H) e largura (W) e desempenho térmico da cobertura) e indicadores para cada um desses quatro parâmetros (de peso 0,25), distribuídos em um escala semântica variando de 0-péssimo, 0,25-ruim, 0,50-regular, 0,75-bom e 1-ótimo. Assim, foi criada uma metodologia para avaliar a qualidade térmica dos espaços de transição do tipo linear externo, que foi aplicada aos espaços estudados, para identificar quais parâmetros contribuem positiva ou negativamente para a qualidade térmica de cada. Essa metodologia permite elencar os melhores indicadores para uma avaliação positiva para os espaços de transição e os que devem ser evitados. No entanto, a qualidade microclimática dos ambientes externos adjacentes aos de transição são decisivos para uma ótima avaliação térmica. Os resultados evidenciam que a qualidade térmica dos espaços de transição é influenciada por alguns atributos projetuais e também pelas características de obstrução do entorno, além da qualidade microclimática do entorno imediato. A pesquisa também comprovou o papel amenizador microclimático e das condições de conforto térmico, calculados por meio do índice PET e, assim, reforçou resultados obtidos em estudos abordados na revisão bibliográfica. Espera-se que essa pesquisa possa contribuir para subsidiar intervenções projetuais nos espaços avaliados; contribuir para o projeto de novos espaços de transição, além de incentivar o desenvolvimento de estudos similares em outros contextos climáticos e em diferentes condições de tempo. / This research investigates the relationship between the thermal quality of transitional spaces and their physical attributes, and the thermal conditions of their immediate surroundings. The study was based on microclimatic data monitoring conducted in warm weather conditions in eight linear, external transitional spaces, and in the internal and external spaces associated with them. The spaces selected are located at a university setting in the city of Bauru-SP; and because they are within classroom buildings, these spaces represent important environments for student interaction. In order to verify the influence of project attributes, evaluation parameters (solar radiation intensity, obstruction of surroundings, height (H) and width (W), and thermal performance of the roof), and indicators for each of these four parameters were set and distributed in a semantic scale that varied from 0-very bad, 0.25-bad, 0.50average, 0.75-good, to 1-very good. This way, a methodology was created to evaluate the thermal quality of linear external transitional spaces, and applied to the spaces studied to identify which parameters contribute positively or negatively to the thermal quality of each one. This methodology allows for the classification of the best indicators, as well as the ones that should be avoided, for a positive evaluation of the transitional spaces. The results reveal that the thermal quality of transitional spaces is influenced not only by some project attributes but also by obstruction of surroundings characteristics, and by the microclimatic quality of the immediate surroundings. This research also proved the mitigating roles of microclimatic and thermal comfort conditions, which were calculated using the PET index, thereby reinforcing the results obtained in studies addressed in the bibliographic review. It is expected that this research will contribute to subsidizing project interventions in the spaces evaluated, and projects of new transitional spaces, in addition to promoting the development of similar studies in other climatic contexts, and in different weather conditions.
|
3 |
Aspects of the thermal ecology of the group-living lizard, Cordylus cataphractus : a spatial and temporal analysisTruter, Johannes Christoff 03 1900 (has links)
Thesis (MSc (Botany and Zoology))--University of Stellenbosch, 2011. / Includes bibliography. / ENGLISH ABSTRACT: Thermal ecology is a central theme in reptilian biology because of the thermodynamic rate
dependence of virtually all biological processes in these ectothermic animals.
Thermoregulation includes active processes (with associated energetic costs related to
altered behaviour and physiology) functioning to maintain body temperatures within a
preferred temperature range, so that the majority of physiological functions occurs optimally,
despite natural variation in the animal’s thermal habitat. The recent development of
quantitative thermal indices now allows researchers to describe the thermal habitat and
thermoregulatory functioning of an ectotherm within its environment from a cost-benefit
perspective. The use of such quantitative biophysical approaches to reptile thermal ecology
studies is however limited in the African context. Cordylus cataphractus is one of the best
studied cordylids, and exhibits various characteristics atypical for the family, such as
permanent group-living, seasonally lowered surface activity, a low resting metabolic rate and
large fat bodies. These characteristics are generally thought to be associated with groupliving
in a semi-arid habitat, yet, the possible links to thermal ecology remains unexplored.
The objectives of the current study was: firstly, to characterize the preferred
temperature range (Tp) of C. cataphractus through the use of ecologically realistic laboratory
thermal gradients; secondly, to explore seasonal and geographical variation in thermal
preference, by comparing Tp among individuals captured from a coastal and inland
population and during different seasons (autumn and spring); thirdly, to describe the thermal
habitat of a C. cataphractus population during summer, autumn, winter and spring and to
then relate these findings to the seasonal activity patterns reported in literature for the
species; fourthly, to describe the seasonal patterns of thermoregulation (during summer,
autumn, winter and spring) in a C. cataphractus population through quantitative
thermoregulatory indices; fifthly, to assess geographic variation in the thermal habitat and
IV
associated patterns of thermoregulation in C. cataphractus among a coastal population
(western range limit) and an inland population (eastern range limit). The thermal habitat of C.
cataphractus was described by measuring operative environmental temperatures (Te) with
hollow copper lizard models placed around rocks according to the natural surface movement
patterns of the species. Variation in thermal habitat quality was subsequently calculated (de
= |Te – Tp|) and averaged. Field body temperatures (Tb) of lizards were measured with
dorsally attached miniature temperature loggers. Thermoregulatory indices were calculated
from Te, Tb and Tp, describing: thermoregulatory accuracy, the effectiveness of
thermoregulation and thermal exploitation for each population (coastal and inland) for the
respective sampling periods.
The preferred body temperature range of C. cataphractus is the lowest recorded
among cordylids to date (mean Tp = 29.8oC) and was conserved among different populations
and within these populations among seasons, despite the fact that environmental
temperatures are known to vary geographically and seasonally.
Thermal habitat quality varied significantly at micro spatial scale around rocks in the
coastal population. Since C. cataphractus males are territorial, competition for thermal
habitat quality around rocks may therefore occur. Such effects will be a function of the time
of year since the variability in thermal habitat quality among rock aspects (around rocks)
varied seasonally.
Thermal habitat quality of crevices varied among seasons and was typically higher in
the open, outside rock crevices, during the cooler winter and spring periods, whereas in
summer and autumn the crevice environments were more favourable. Thermal habitat
quality was high in crevices during autumn, suggesting that the observed repressed surface
activity of C. cataphractus described for the time is not necessarily, as previously thought,
only due to food constraints. Moreover, in contrast to earlier reports, the current results (Tb
versus Te) indicate that individuals emerged from crevices in summer.
The geographical assessment indicated that lizards from the coastal population, with
generally larger groups, thermoregulated more successfully than those from the inland population. The higher thermoregulatory success in the coastal population occurred in spite
of the fact that thermal habitat quality was significantly lower at the coastal locality. The
higher thermoregulatory success in the coastal population was likely due to reduced
predation risk associated with increased group-size. The seasonal trends in
thermoregulation at the coastal and inland population corresponded to the patterns predicted
by the cost-benefit model of thermoregulation, accuracy of thermoregulation and the
effectiveness of thermal exploitation being higher during the thermally more favourable
autumn. / AFRIKAANSE OPSOMMING: Uittreksel
Termiese ekologie is ‘n sentrale tema in reptiel-biologie as gevolg van die termodinamies
tempo-afhanklikheid van feitlik alle biologiese prosesse in hierdie ektotermiese diere.
Termoregulering sluit aktiewe prosesse (wat lei tot energie-koste in terme van gedrag en
fisiologie) in om liggaamstemperature binne ‘n vasgestelde voorkeurtemperatuur-reeks te
handhaaf sodat fisiologiese prosesse optimaal kan geskied te midde van natuurlike variasie
in die dier se termiese omgewing. Die onlangse ontwikkeling van kwantitatiewe funksionele
termiese indekse stel navorsers nou in staat om die werklike termiese omgewing en die
funksionering van die ektoterm binne sy omgewing te beskryf en uit ‘n koste (energie)-
voordeel oogpunt te verstaan. Die gebruik van hierdie biofisiese koste-voordeel benadering
in reptiel termoreguleringstudies is egter beperk in die Afrika-konteks. Cordylus cataphractus
is een van die bes bestudeerde lede van familie Cordylidae, en vertoon verskeie eienskappe
ongewoon vir hierdie groep akkedisse, soos groeplewendheid, beperkte seisoenale aktiwiteit
buite hul skeure, ‘n relatiewe lae rustende metaboliese tempo en relatiewe groot vetliggame.
Hierdie unieke eienskappe is al deur navorsers gekoppel aan die groeplewe lewensstrategie.
Die potensiële koppeling van die termiese ekologie en die spesifieke lewensstrategie
van C. cataphractus benodig verdere studie. Die doelwitte van hierdie studie was
eerstens: om die voorkeurtemperatuur-reeks (Tp) van C. cataphractus te bepaal deur van
ekologies-realistiese termiese gradiënte in die laboratorium gebruik te maak; tweedens: om
geografiese en seisoenale variasie in Tp te ondersoek deur individue te gebruik wat uit
binnelandse en kus-populasies, tydens verskillende seisoene, herfs en lente versamel is;
derdens: om die termiese omgewing, meer spesifiek die variasie in termiese kwaliteit, binne
die habitat van C. cataphractus populasie in verskillende seisoene, somer, herfs, winter en
lente, te moduleer en met die gedokumenteerde aktiwiteitspatrone in verband te bring;
vierdens: om die seisoenale temoreguleringspatrone (tydens somer, herfs, winter en lente)
van C. cataphractus populasie te beskryf; vyfdens: om geografiese variasie in die termiese
habitat en geassosieerde termoreguleringspatrone tussen kus-populasie (westelike
VII
verspreidingsgrens) en binneland-populasie (oostelike verspreidingsgrens) te bestudeer.
Die kwaliteit van die termiese habitat van C. cataphractus is bepaal deur hol koper-modelle
van akkedisse (operatiewe temperatuur modelle (Te)) te plaas rondom rotse in
ooreenstemming met die natuurlike bewegingspatrone van die akkedisse. Die termiese
kwaliteit is gevolglik afgelei (de = |Te – Tp|) en gemiddeldes bereken. Die
liggaamstemperature (Tb) van vrylopende akkedisse in die veld is met dorsaal-gemonteerde
miniatuur temperatuur “data-loggers” gemeet. Termiese indekse (deur Te, Tb en Tp te
gebruik) is bereken om die akkuraatheid en effektiwiteit van termoregulering, sowel as
termiese benutting van die omgewing vir beide populasies (kus en binneland) tydens
verskillende seisoene te beraam.
Die voorkeurtemperatuur-reeks van C. cataphractus is die laagste gedokumenteerde
temperature vir enige lid van die familie Cordylidae tot op hede bestudeer (gemiddeld van Tp
= 29.8oC), en het ten spyte van die feit dat omgewingstemperature wissel op geografiese en
seisoenale vlakke, min gevarieer tussen die twee populasies asook tydens verskillende
seisoene binne die populasies.
Die termiese kwaliteit het beduidend gevarieer tussen seisoene en binne die mikroruimtelike
omgewing rondom rotse in die kus-populasie. Aangesien C. cataphractus
mannetjies territoriaal is, word die aanname gemaak dat kompetisie vir ‘n ruimtelike posisie
ook ‘n termiese koste mag hê aangesien daar beduidende variasie in de om die rotse was.
Variasie in termiese kwaliteit rondom rotse was verder ook funksie van die tyd van die jaar
(seisoene).
Die termiese kwaliteit van skeure het gevarieer tussen seisoene, en termiese
kondisies/toestande was oor die algemeen meer gunstig buite die rots-skeure tydens die
koeler winter en lente tydperke, terwyl skeure termies meer gunstig was in die somer en
herfs maande. Termiese habitat kwaliteit van skeure was besonders hoog gedurende die
herfs, en die voorspelling is dus dat die verlaagde oppervlak-aktiwiteit wat gedurende hierdie
tyd van die jaar vir C. cataphractus gedokumenteer is nie noodwendig funksie van
beperkte voedselbeskikbaarheid is nie. Teenstrydig met gepubliseerde aktiwiteitsrekords dui die resultate (Tb teenoor Te) verder daarop dat individue wel uit skeure kom tydens die warm
somer seisoen.
Die geografiese ondersoek het gewys dat akkedisse van die kus-populasie (wat
gewoonlik uit groter groepe bestaan), meer akkuraat getermoreguleer het as akkedisse van
die binneland-populasie. Die hoër akkuraatheid van termoregulering in die kus-populasie is
bewerkstellig ten spyte van die feit dat die termiese kwaliteit beduidend laer was as die van
die binneland-populasie. Die hoër termoreguleringsakkuraatheid in die kus-populasie kan
waarskynlik toegeskryf word aan laer predasie-risiko geassosieer met groter groepe. Die
seisoenale variasie-patroon van termoregulering kan verklaar word deur die koste-voordeel
model van termoregulering, waarvolgens die akkuraatheid van termoregulering sowel as
termiese benutting hoër is tydens periodes van hoë termiese kwaliteit (i.e. herfs).
|
Page generated in 0.0853 seconds