• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Natural gas recovery from hydrates in a silica sand matrix

Haligva, Cef 05 1900 (has links)
This thesis studies methane hydrate crystal formation and decomposition at 1.0, 4.0 and 7.0°C in a new apparatus. Hydrate was formed in the interstitial space of a variable volume bed of silica sand particles with an average diameter equal to 329μm (150 to 630μm range). The initial pressure inside the reactor was 8.0MPa for all the formation experiments. Three bed sizes were employed in order to observe the effects of the silica sand bed size on the rate of methane consumption (formation) and release (decomposition). The temperature at various locations inside the silica sand bed was measured with thermocouples during formation and decomposition experiments. For the decomposition experiments, two different methods were employed to dissociate the hydrate: thermal stimulation and depressurization. It was found that more than 74.0% of water conversion to hydrates was achieved in all hydrate formation experiments at 4.0°C and 1.0°C starting with a pressure of 8.0MPa. The dissociation of hydrate was found to occur in two stages when thermal stimulation was employed whereas three stages were found during depressurization. In both cases, the first stage was strongly affected by the changing bed size whereas it was not found to depend on the bed size afterwards.
2

Natural gas recovery from hydrates in a silica sand matrix

Haligva, Cef 05 1900 (has links)
This thesis studies methane hydrate crystal formation and decomposition at 1.0, 4.0 and 7.0°C in a new apparatus. Hydrate was formed in the interstitial space of a variable volume bed of silica sand particles with an average diameter equal to 329μm (150 to 630μm range). The initial pressure inside the reactor was 8.0MPa for all the formation experiments. Three bed sizes were employed in order to observe the effects of the silica sand bed size on the rate of methane consumption (formation) and release (decomposition). The temperature at various locations inside the silica sand bed was measured with thermocouples during formation and decomposition experiments. For the decomposition experiments, two different methods were employed to dissociate the hydrate: thermal stimulation and depressurization. It was found that more than 74.0% of water conversion to hydrates was achieved in all hydrate formation experiments at 4.0°C and 1.0°C starting with a pressure of 8.0MPa. The dissociation of hydrate was found to occur in two stages when thermal stimulation was employed whereas three stages were found during depressurization. In both cases, the first stage was strongly affected by the changing bed size whereas it was not found to depend on the bed size afterwards.
3

Natural gas recovery from hydrates in a silica sand matrix

Haligva, Cef 05 1900 (has links)
This thesis studies methane hydrate crystal formation and decomposition at 1.0, 4.0 and 7.0°C in a new apparatus. Hydrate was formed in the interstitial space of a variable volume bed of silica sand particles with an average diameter equal to 329μm (150 to 630μm range). The initial pressure inside the reactor was 8.0MPa for all the formation experiments. Three bed sizes were employed in order to observe the effects of the silica sand bed size on the rate of methane consumption (formation) and release (decomposition). The temperature at various locations inside the silica sand bed was measured with thermocouples during formation and decomposition experiments. For the decomposition experiments, two different methods were employed to dissociate the hydrate: thermal stimulation and depressurization. It was found that more than 74.0% of water conversion to hydrates was achieved in all hydrate formation experiments at 4.0°C and 1.0°C starting with a pressure of 8.0MPa. The dissociation of hydrate was found to occur in two stages when thermal stimulation was employed whereas three stages were found during depressurization. In both cases, the first stage was strongly affected by the changing bed size whereas it was not found to depend on the bed size afterwards. / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
4

The Effect of Thermal Stimulation on Corticospinal Excitability

Ansari, Yekta 21 June 2019 (has links)
This thesis describes a series of experiments to investigate the effect of thermal stimulation on corticospinal excitability using transcranial magnetic stimulation (TMS). Experiment I showed that innocuous cooling or warming of a single digit, produced short-lasting and mixed patterns of modulation only during actual thermal stimulation, with the inhibition being the most common pattern observed. In line with this finding, cooling stimulation applied to a larger area (i.e. multi-digits) produced variable but more sustained modulation in motor evoked potential (MEP) amplitude in the post-cooling phase (Exp II). Notably, the responses to cooling in terms of either suppressed or enhanced corticospinal excitability tended to be fairly consistent in a given individual with repeated applications. When examining possible sources of the observed variable MEP modulation, we found that individual characteristics such as age, sex and changes in skin temperature had no major influences. We hypothesized that the variability of responses might be related to individual differences in the excitability of intra-cortical circuits involved in sensorimotor integration. To test this hypothesis, we performed Experiment III using conditioning TMS paradigms. This experiment revealed that TMS markers of sensorimotor integration (SAI and SAF levels) were good predictors of individual variations in cooling-induced modulation in corticospinal excitability. This provided evidence supporting the role of SAI and SAF as markers to predict individual’s response to focal thermal stimulation. The identification of such predictors could enhance the therapeutic applicability of this form of stimulation in neurorehabilitation. Collectively, these findings advance our understanding of the neurophysiological basis of thermal stimulation and shed light on the development of a more rational application of neurofacilitation techniques based on afferent stimulation in clinical populations, such as stroke survivors.
5

Thermal Stimulation of the Rotokawa Andesite: A Laboratory Approach

Siratovich, Paul August January 2014 (has links)
Thermal stimulation of geothermal wells is a production enhancement technique that is an attractive option to operators of geothermal fields as a way to enhance and revitalize well performance capabilities through injection of cold water into the geothermal reservoir. This thesis presents a review of thermal stimulation procedures that have been carried out at various geothermal fields worldwide, and then sets out to demonstrate through laboratory experiments the effects of thermal stimulation on typical reservoir rocks. Thermal damage to crustal rocks is important in many fields of practical engineering applications. Thermal fractures have been discussed in many studies, however their formation under fully water saturated conditions as a result of rapid quenching is not fully understood. In this study, a new methodology is designed to replicate thermal stimulation in such an environment, using an apparatus that allows rocks to be heated to 350°C at up to 22 MPa confining pressure and rapidly quenched with cold water to ambient temperature while maintaining system pressure. The results indicate that through thermal cycling in the apparatus, porosity was increased, density decreased, acoustic velocities attenuated and mechanical properties significantly altered. Maximum damage occurred during the first thermal cycle, a product of the thermo-mechanical Kaiser effect such that rocks should not experience additional damage unless a previous maximum stress is surpassed. The thesis details a comprehensive evaluation of the Rotokawa Andesite sourced from the Rotokawa Geothermal field located in the Taupo Volcanic Zone, New Zealand. The importance of microstructural fabrics on the physical properties of this reservoir lithology is demonstrated. The mineralogical and petrological fabrics of the rocks are coupled with detailed studies of the microstructural fracture networks, including measurements of porosity, density and permeability. Acoustic wave velocities and dynamic elastic moduli were determined. Uniaxial compressive strength testing coupled with acoustic emission have helped to determine the behavior of the rock under deformation and provided data to characterize the static elastic moduli of the rocks. These data are then utilized to build empirical, micromechanical and geometric relationships. To better constrain important engineering concerns such as wellbore stability, reservoir forecasting and stimulation procedures, thermal property measurements were carried out on samples recovered from the Rotokawa Andesite. In particular, measurements of linear thermal expansion, thermogravimetric analysis, and differential scanning calorimetry were measured utilizing varied experimental heating rates of 2, 5 and 20 K/min. The property analyses were carried out to determine if heating rates influenced the measurement of thermal properties, specifically thermal expansion coefficients and strain rate in the samples. Results indicate that thermal expansion is not heating rate dependent within the range investigated though the strain rate is significantly dependent on heating rate, with higher strain rates observed in conjunction with higher heating rates. By using a one dimensional stress model, a failure criterion can be established for the Rotokawa Andesite when subject to thermal stressing. The importance of this study is to further understand the critical heating and cooling rates at which thermal stress causes cracking within the Rotokawa reservoir. This can enhance permeability but can also affect wellbore stability, so constraining these conditions can be beneficial to resource utilization. To test effects of thermal stimulation in the laboratory, Rotokawa Andesite core was heated to 325ºC at pressure of 20 MPa and quenched rapidly to 20ºC while maintaining a pressure of 20 MPa. Permeability increased by an order of magnitude over original pre-treatment values. Ultrasonic velocities also reflected a significant change after stimulation testing. Scanning electron microscopy showed significant microstructural change to samples and supplemented physical property investigations. The results imply that thermal stimulation can be successfully repeated in the laboratory and is coupled with both thermal and chemical components. The results of these investigations are of profound importance for effective utilization and maintenance of the Rotokawa Geothermal field and the results also have implications for geothermal fields worldwide.
6

CEREBRAL ACTIVATION DURING THERMAL STIMULATION OF BURNING MOUTH DISORDER PATIENTS: AN fMRI STUDY

Albuquerque, Romulo J.C. 01 January 2004 (has links)
Functional magnetic resonance imaging (fMRI) has been widely used to study cortical and subcortical mechanisms related to pain. The pathophysiology of burning mouth disorder (BMD) is not clearly understood. Central neuropathic mechanisms are thought to be main players in BMD. This study aimed to compare the location and extension of brain activation following thermal stimulation of the trigeminal nerve with fMRI blood oxygenation level dependent (BOLD) signal. This study included 8 female patients with BMD and 8 matched pain-free volunteers. Qualitative and quantitative differences in brain activation patterns between the two study groups were demonstrated. There were differences in the activation maps regarding the location of activation, with patients displaying greater BOLD signal changes in the right anterior cingulate cortex (ACC BA 32/24) and bilateral precuneus (pandlt;0.005). The control group showed larger BOLD signal changes in the bilateral thalamus, right middle frontal gyrus, right pre-central gyrus, left lingual gyrus and cerebellum (pandlt;0.005). It was also demonstrated that patients had far less volumetric activation throughout the entire brain compared to the control group. These data are discussed in light of recent findings suggesting brain hypofunction as a key player in chronic neuropathic pain conditions.

Page generated in 0.1252 seconds