• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-Optical Properties of Polymer Dispersed Liquid Crystals

Chen, Lu Guang, s3064076@student.rmit.edu.au January 2007 (has links)
Polymer dispersed liquid crystal (PDLC) films, consisting of micro-sized domains of a liquid crystal dispersing in a polymer matrix, serve as the basis of a variety of high-efficiency electro-optical effects. The thermo-optical properties of the PDLCs were investigated in this thesis. The thermal properties and the morphologies of four low molar mass mesogens were studied by DSC and polarized optical microscope (POM). There were significant super cooling/heating effects on the first order phase transitions but not on the mesophase transitions. The structural effects on the transition temperature were investigated. Between the two 4-alkoxybenzoic acids mesogens, the clearing temperature of 4-(octyloxy)benzoic acid was higher than 4-(decyloxy)benzoic acid because of the increasing chain length. Trans-4-methoxycinnamic acid had the highest melting temperature among the four mesogens despite the molar mass because the carboxylic acid termini of trans-4-methoxycinnamic acid gave rise to strong intermolecular attractions. The smectic phases of 4-(octyloxy)benzoic acid were classified as head-to-head bilayer orientational smectic structures, SmA2 and SmC2, respectively, by wide angle X-ray diffraction through measuring the d spacing of the liquid crystal. The total solubility parameter was used to evaluate matching a polymer-LC-solvent combination. PDLC films were prepared by the solvent induced phase separation method and suitable morphologies were achieved by thermal induced phase separation. The phase transition temperatures of PDLCs were shifted to a lower temperature due to the polymer dispersion effects. Different mesophases were observed in PDLC films when LC exhibited different mesophases. The LC fractions in the droplets were calculated from the nematic to isotropic enthalpies through the Smith equation. Two factors, thermal cooling rate and the LC concentration, which affect the size of the droplet dispersed in the polymer matrix, were investigated in the PVC dispersed 4,4'-azoxyanisole. The phase transitions of pHEMA dispersed 4-(octyloxy)benzoic acid and PVC dispersed 4,4'-azoxyanisole were investigated by TMDSC and quasi-isothermal TMDSC. The TMDSC results were analysed by the two approaches, reversing and non-reversing heat flow and complex heat capacity. The results of the phase transitions of the two PDLCs illustrated that in the PDLCs it involved both non-reversing, melting, and reversing, clearing and the transition between two mesophases. In the non-reversing transition, the transition temperature would be affected by super cooling/heating and the results obtained in the experiments were dependent on the experimental conditions, such as the heating or cooling rate, sample size and purge gas flow rate. However, in the reversing transition process, there were no super cooling/heating effects observed and it seemed that the experimental conditions were not so critical. Results could be monitored by Lissajous figures obtained from the quasi-isothermal TMDSC. The plots of modulated heat flow versus the derivative of modulated temperature can be used to alert to unfavorable experimental conditions where loss of system linearity could be seen.

Page generated in 0.0817 seconds