Spelling suggestions: "subject:"than"" "subject:"then""
1311 |
Modelling of dynamical effects related to the wettability and capillarity of simple and complex liquidsTodorova, Desislava V. January 2013 (has links)
This Thesis explores physical phenomena characteristic for thin liquid films and small droplets of simple and complex liquids on solid substrates for which wettability and capillarity control their statical and dynamical properties. We start by discussing the general concepts of wettability and capillarity and introduce the common mathematical framework of the lubrication approximation for studies of thin liquid films and small contact angle drops. We demonstrate the derivation of the generic equation describing the evolution of a film of simple liquid from the Navier-Stokes equations. We show how this model can be further extended to incorporate various effects relevant to the case of complex liquids. The results described in the Thesis comprise three projects with the common main theme of the influence of wettability and capillarity on the statics and dynamics of the studied systems, namely (i) Evaporating sessile droplets fed through the solid substrate - a geometry that allows us to discuss steady states of the system and their role in the time evolution of freely evaporating droplets without influx in an isothermal case; (ii) The influence of a solute--dependent wettability on the stability, static and dynamical properties of thin films and drops of non-volatile mixtures, suspensions and solutions; (iii) A parameter-passing scheme between particle-based Molecular Dynamics simulations and the continuum lubrication model which allows us to discuss equilibrium properties of small polymeric droplets. We present the physical questions arising in the three systems and discuss approaches and results as well as possible extensions.
|
1312 |
THREE-BEAM SHEARING INTERFEROMETER FOR MEASURING THIN FILM THICKNESS, SURFACE ROUGHNESS, AND SURFACE FIGURE.Almarzouk, Kais January 1982 (has links)
A three-beam lateral shearing interferometer has been developed. The three-beam shearing interferograms consist of two sets of fringes, one of which acts as a carrier whose intensity is modulated by the second set. The depth of modulation is directly proportional to the phase difference between the middle beam and the outer beams. Phase errors on the order of π/2 cause every other fringe to go from complete dark to complete bright. Therefore, phase errors much smaller than π/2 can be detected. The three-beam interferometer is implemented in three ways: (1) thin film thickness measurement, (2) surface roughness measurement, and (3) surface figure measurement. The three-beam interferometer implemented to measure thin film thickness and surface roughness is accurate to 25 Å. Surfaces with different microstructure are characterized. We have found that each of those surfaces may have one or more of the following: (1) random roughness, (2) slow waviness, and/or (3) periodic structure. The three-beam interferometer is also implemented for testing optical surfaces. The three-beam interferometer is more capable in detecting small zonal errors than the two-beam interferometer. Three-beam interferograms of different surfaces are produced and analyzed. The three-beam interferometer has many advantages: (1) it is a stable, common path interferometer, (2) white light can be instead of coherent light to get rid of the effects of speckle and dust particles, and (3) it is a very low cost interferometer.
|
1313 |
OPTICAL PROPERTIES OF CHEMICAL VAPOR DEPOSITED BLACK MOLYBDENUM THIN FILMS.CHAIN, ELIZABETH ELLEN. January 1983 (has links)
This dissertation reports on the study of black molybdenum, a new cermet consisting of small Mo particles embedded in MoO₂. As with most two-phase materials, the optical properties of black molybdenum are significantly different from those of either constituent, and can be adjusted within wide limits through modifications of composition and microstructure due to variations of the fabrication process parameters. The subject of this work is to understand the exact relationships, to allow reproducible production of films with chosen optical properties. Theoretical interpretation of the optical properties of two-phase materials has in the past been hampered by insufficient microstructural characterization. Recent theoretical work by others has lifted the requirements of detailed microstructural knowledge, leaving only two required parameters for characterization of cermet reflectance: the optical properties of the constituent phases and their volume fractions in the cermet. Better characterization is obtained when structural considerations, such as film topology, surface texture and the presence of a possible amorphous phase, are taken into account. We adopted this approach to the study of black molybdenum, and accomplished satisfactory agreement between theoretical and observed reflectances. Black molybdenum films were prepared using two separate chemical vapor deposition (CVD) techniques, involving deposition from either Mo(CO)₆ or MoO₂Cl₂. We found the influence of composition through a comparison of films with different Mo:MoO₂ ratios, while the influence of structure on film reflectance was determined by comparing films from these two deposition techniques. During this investigation we produced black molybdenum films which display a spectrally selective profile--low visible reflectance combined with high infrared reflectance, and which may be applied to photothermal solar energy conversion. The versatility of CVD in adjusting film composition and structure resulted in another film of interest in photothermal conversion--black tungsten, a tungsten-tungsten oxide composite material. The black molybdenum and black tungsten systems studied here establish the utility of CVD for the production of high temperature thin film optical devices.
|
1314 |
Preparation and post-annealing effects on the optical properties of indium tin oxide thin filmsWang, Rongxin., 王榮新. January 2005 (has links)
published_or_final_version / abstract / Physics / Doctoral / Doctor of Philosophy
|
1315 |
Mobility enhancement for organic thin-film transistors using nitridation methodKwan, Man-chi., 關敏志. January 2006 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Master / Master of Philosophy
|
1316 |
Design, fabrication and characterization of organic thin filmdevices (OLEDs and OTFTs) based on Pt(II) complexes張志泉, Cheung, Chi-chuen, Cecil. January 2007 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
1317 |
Organic thin film transistors and solar cells fabricated with [pi]-conjugated polymers and macrocyclic materialsXu, Zongxiang., 许宗祥. January 2009 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
1318 |
A study on novel organic semiconductor devices: light-emitting diode and thin-film transistorCheng, Kam-ho., 鄭錦豪. January 2009 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
1319 |
Uniform residence time in microreactor-assisted solution deposition of CdS thin-films for CIGS photovoltaic cellsHires, Clayton Lamar 12 January 2011 (has links)
Photovoltaic (PV) cells have long been an attractive alternative for the consumption of fossil fuels but current manufacturing practices suffer from poor energy efficiency, large carbon footprints, low material utilization, high processing temperatures and high solvent usage. A critical step in PV production is the deposition of CdS as a thin film to serve as a "buffer layer" between the optically absorbent layer and the transparent conducting oxide (TCO) layer to complete an effective p-n junction.
The development of an inexpensive, low temperature, constant flow deposition process for producing CdS films is investigated. Micro-assisted solution concepts are implemented to promote the selectivity of heterogeneous surface reactions over homogeneous bulk precipitation. Analytical models based off Hagen-Poiseuille equation for fluid flow are coupled with computational fluid dynamic simulations to produce uniform flow fields within the deposition step permitting uniform film coverage on large substrates. / Graduation date: 2011 / Access restricted to the OSU Community at author's request from Jan. 11, 2011-Jan. 11, 2012.
|
1320 |
Effects of the fluid rheology and surface texture on the footprint of passive droplets.Ahmed, Gulraiz January 2014 (has links)
Bloodstain pattern analysis has been used in criminal investigations for more than 100 years. It provides valuable information about the events that took place prior to the formation of bloodstains at a crime scene. Forensic scientists use empirical laws to make a deduction from bloodstains, but the validity of these conclusions has been challenged in courts due to
a lack of understanding of the underlying fluid mechanics. With this motivation, this thesis illustrates how mathematical modeling and numerical simulation can help gain insight into the spreading of blood droplets which eventually leads to the formation of a bloodstain.
Understanding the fluid mechanics of droplet spreading and sliding has been accomplished with the help of the lubrication approximation which simplifies the Navier-Stokes equations to a more tractable form, i.e. a coupled set of non-linear partial differential equations. The resulting highly non-linear coupled set of equations is discretized using Finite-Difference. The resulting algebraic system is solved via an efficient Multigrid algorithm. These equations are modified to understand the effects of contact angle hysteresis, fluid rheology and absorptive properties of substrates on sliding dynamics.
Variations in the inclination of the substrate cause the droplets to attain different advancing and receding contact angles as they slide down the incline under gravitational pull. This work explores a new way to introduce contact angle hysteresis in the numerical simulation to predict the different phases of a sliding droplet. Experiments of fluid droplet spreading/sliding on inclined surfaces have been performed to measure the terminal sliding velocity. A simplified hysteresis model has been proposed. This model automatically locates the section of the contact line which is advancing and the section which is receding which enables the application of the contact angles for the advancing and receding fronts and therefore takes into account contact angle hysteresis. A simplified analytical model is also suggested for droplets moving down the incline with near circular footprints. With the inclusion of the contact angle hysteresis, simulation results were brought in closer agreement with the experimental ones and the results from both were compared with the results from the analytical model.
Blood is a shear-thinning fluid. One of the main objectives of this study is to investigate numerically the effect on the spreading and/or sliding of non-Newtonian fluid droplets on surfaces. To achieve this, the effect of rheology on the leveling of thin fluid films on horizontal solid substrates is first investigated as a preliminary investigation since this problem does not involve a contact line and is therefore more tractable. A mathematical model based on the lubrication approximation which defines non-Newtonian rheology using a power-law model is presented. Results for the leveling of sinusoidal perturbations of the fluid film
highlight important differences between the leveling of shear-thinning and shear-thickening fluids. Namely, the onset of leveling occurs earlier for the shear-thinning fluid than for the shear-thickening one. However, the rate of leveling is higher for the shear-thickening fluid than the shear-thinning one. An important aspect of this part of the work is the verification
of the numerical implementation using the Method of Manufactured Solutions (MMS). This leveling study also highlights differences between the leveling of two-dimensional and three-dimensional perturbations.
This verified numerical formulation is then used to study the effects of rheology on the spreading/sliding of droplets. Results for the spreading of fully wetting droplets on a horizontal substrate show that, for all other quantities being equal, an increase of the flow index leads to a more rapid wetting. It also shows that, even for non-Newtonian fluids, the droplet velocity asymptotes to a constant value when sliding down an inclined substrate. This terminal velocity is strongly dependent on the rheological parameters and as it is reached, the droplets travel with a visibly constant profile. Finally, the numerical simulations revealed the formation of a tail at the rear of the droplet as it slides down the incline plane in the case of shear-thickening fluids.
Finally, a more complex dynamics of fluid being absorbed in a porous substrate as it slides/spreads is considered. A mathematical model based on the lubrication approximation which defines the absorptive property of a substrate using a Darcy’s model is presented. This numerical model is verified with the help of comparison between the analytical and numerical solutions
for the absorption of thin film on horizontal porous substrates. Results show that physical properties of the substrates, i.e. permeability, porosity, capillary pressure and equilibrium contact angle affect the rate of absorption of the fluid. Adding inclination to the problem, introduces the gravitational pull in the absorption dynamics. This directly shows its effects on the footprints formed inside the porous substrates.
The following papers, based on sections of this thesis, have appeared or been accepted for publication:
- Ahmed, G., Sellier, M., Lee, Y., Jermy, M., and Taylor, M. (2013). Modeling the spreading and sliding of power-law droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432:2–7.
- Ahmed, G., Sellier, M., Lee, Y., Jermy, M., and Taylor, M. (2014). Rheological effects on the leveling dynamics of thin fluid films. Accepted for publication in the International Journal of Numerical Methods for Heat and Fluid Flow.
- Ahmed, G., Sellier, M., Jermy, M., and Taylor, M. (2014). Modelling the effects of contact angle hysteresis on sliding of droplets on inclined surfaces. Submitted for peer review in The European Journal of Mechanics - B/Fluids.
|
Page generated in 0.0648 seconds