Spelling suggestions: "subject:"than"" "subject:"then""
551 |
Study of hydrogen storage and electrochemical properties of LANI5-based thin films and porous silicon thin films for mini-fuel cells and micro-batteriesLi, Chi Ying Vanessa, Materials Science & Engineering, Faculty of Science, UNSW January 2008 (has links)
Two thin film materials - intermetallic and porous silicon thin films, have been studied in this thesis. The first part focuses on the hydrogen storage and electrochemical properties of single layer LaNi5-based thin films fabricated by magnetron sputtering. The aim is to enhance their performance in mini hydrogen storage systems, and their application as electrodes in thin film Ni-MH micro-batteries. Such LaNi5-based thin films were fabricated by magnetron puttering. Using X-ray diffraction (XRD), these thin films revealed a crystalline structure with uniform chemical composition. Using AFM, SEM and TEM, they were found to have a unique microstructure: (1) Nanopores of approximately 15-40 nm which could possibly act as hydrogen reservoir (2) A dense, defect free cross sectional region which would ultimately improve the efficiency and lifetime of the thin film electrodes used in thin film battery. The hydrogen absorption/desorption behaviour of these thin films were determined by volumetric method. The maximum hydrogen content of the La-Ni-A1 film was found to be 1.45 wt% at 333 K which was very close to the theoretical capacity of 1.47 wt%; and higher than that of the La-Ni-AI powder materials (1.2 wt%). Electrochemical properties of the films were measured by simulated battery tests. When discharged at low current, the discharge capacity of the film was similar to that of powder materials - about 220 mAh/g for the first 30 cycles. When the thin film electrode was discharged at a high rate, 4C (current density of 100 mA/g), it could reach the maximum specific capacity of 200 mAh/g and maintained this capacity for 200 cycles; the value was not attainable for La-Ni-AI powder electrode. The presence of crack propagation in film during charge/discharge cycles would improve the electrochemical performance which was different to that of powder materials. Cyclic voltammetry reported that the efficiency of the film could maintain at 80% for the first 200 cycles and gradually decreased due to the formation of corrosion products on surface, which is consistent with the galvanostatic results. XPS (X-ray Photoelectron Spectroscopy) revealed that the corrosion products ??? A1203, La203 and La(OH)3 formed on the film surface after cyclic voltammetry. The second part reported the hydrogen absorption/desorption behaviour of porous silicon thin films. The hydrogen content was determined quantitatively by both volumetric method and thermogravimetric analysis (TGA) and found to be 15 wt% at 423 K under 15 atm of hydrogen pressure. This is an extraordinary amount of hydrogen absorption which supersedes the US Department of Energy's 2007 target of 6.5 wt%. Hydrogen depth profiles of the film after hydrogenation performed by Secondary Ion Mass Spectroscopy confirmed there was hydrogen within the film structure, this was an indication that hydrogen was not just physisorbed on the film surface, but chemisorbed into the porous Si lattice. X-ray diffraction found that there was a lattice contraction upon hydrogen insertion, again suggesting the hydrogen entered into the film structure by chemisorption.
|
552 |
Measurement of interactions between solid and fluid surfaces : deformability, electrical double layer forces and thin film drainageConnor, Jason N. Unknown Date (has links)
Thesis (PhD)--University of South Australia, 2001
|
553 |
Nucleation and Equilibration via Surface Diffusion: An Experimental StudyMcCarthy, David Norman January 2008 (has links)
Structures grown via self-assembly are a unique field in nanotechnology. The morphology of self-assembled structures is affected by the balance between kinetics and thermodynamics during growth. Hence structures with tailored morphologies and properties can be created with adjustments in growth conditions. In this thesis we study crystal nucleation and equilibration, for both real and model systems. The growth of thin bismuth films is investigated on three atomically flat surfaces; Mica, Molybdenum di Sulphide, and highly oriented pyrolitic graphite (HOPG). Films are grown under UHV conditions, and characterised using scanning electron microscopy and atomic force microscopy. For coverages of only a few monolayers, bismuth particles are found to aggregate into flat, isolated islands. Islands have characteristic heights and morphologies for each substrate. By altering the deposition flux and coverage, the island density and morphology can be manipulated. On HOPG substrates, planar islands grown at low flux are replaced by 1D structures at high temperature. These anisotopic structures result from an anisotropy in bond strengths at the crystal-vapour interface. Depositing Bi on HOPG substrates at low flux or high temperature conditions produces nanorods aligned (roughly) perpendicular to step edges on the graphite. The aspect ratios (ARs) of these 1D structures are found to increase as the deposition flux is lowered, or the substrate temperature is increased. The Arrhenius dependence of the AR is determined from experiment. A Kinetic Monte Carlo (KMC) model for high AR step-edge aggregates was developed, determining the likely growth mechanism for the nanorods. A scaling regime devised from the KMC results predicts the dependence of nanorod ARs on flux and temperature, and allows an estimation of the energy binding Bi dimers to the sides of nanorods. Thin films can also be grown via the self-assembly of atomic clusters. After deposition coalescence of clusters has implications for the film morphology, and properties. We use KMC simulations to investigate the coalescence of pairs of 3D atomic clusters (15000 to 130000 atoms in size) via lattice based surface diffusion. For early coalescence stages, the radius of the neck region connecting the two clusters is found to develop with a different powerlaw to classical theory. For later coalescence stages, when the nucleation of new atomic layers on facets of the cluster is required for further coalescence the temperature, cluster size, and cluster orientation all influence the coalescence. Equilibration times for clusters coalescing at high temperature are found to be limited by the dissociation of atomic layers.
|
554 |
Modification of semi-metal oxide and metal oxide powders by atomic layer deposition of thin films /Snyder, Mark Q., January 2007 (has links) (PDF)
Thesis (Ph.D.) in Chemical Engineering--University of Maine, 2007. / Includes vita. Includes bibliographical references (leaves 92-107).
|
555 |
Dependence of piezoelectric response in gallium nitride films on silicon substrate typeWillis, Jim. January 1999 (has links)
Thesis (M.S.)--Ohio University, November, 1999. / Title from PDF t.p.
|
556 |
Innovative fabrication of diamond film electrode for environmental applications /Guo, Liang. January 2008 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 161-180). Also available in electronic version.
|
557 |
Improvement of metal induced crystallization process and novel post-annealing technologies /Zhang, Bo. January 2008 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references. Also available in electronic version.
|
558 |
Chemical vapor deposition reactor design and process optimization for the deposition of copper thin films /Stephens, Alan Thomas. January 1994 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1994. / Typescript. Includes bibliographical references (leaves 134-137).
|
559 |
Structure of self-assembled monolayers on gold studied by NEXAFS and photoelectron spectroscopy /Watcharinyanon, Somsakul, January 2008 (has links)
Diss. (sammanfattning) Karlstad : Karlstads universitet, 2008. / Härtill 4 uppsatser.
|
560 |
Grafting of stimuli-responsive polymer films to ultrafiltration membranes /Gorey, Colleen Michelle. January 2008 (has links)
Thesis (M.S.Ch.E.)--University of Toledo, 2008. / Typescript. "Submitted as partial fulfillments of the requirements for the Master of Science in Chemical Engineering." "A thesis entitled"--at head of title. Bibliography: leaves 41-45.
|
Page generated in 0.0564 seconds