• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fabrication of BaNd2Ti5O14 Thin Film Capacitors by RF Magnetron Sputtering

Lu, Yung-wei 17 August 2009 (has links)
The motivation of this study is based on integrated passive filter dielectric thin films with thin layers. Reducing the area of integrated passive filter in a circuit by enhancing dielectric constant with same capacitance and thickness is the purpose which has been expected. To fabricate the thin film MIM structure capacitors, RF magnetron sputtering method was selected and BaNd2Ti5O14 composed materials treated as the target to grow the thin film dielectric layer in MIM structure capacitors. In this study the MIM structure capacitors were deposited on alumina substrates with Pt electrodes. In the thin film experiments, various operation parameters of sputtering deposition and post thermal process at different temperature were used to perform the desired thin film dielectric layers. In order to obtain the optimal performance of the dielectric thin films, ¡§Taguchi Method¡¨ was used as a experimental tool. The primary investigation focused on the electric characteristics of the thin film capacitors in this article. In the arranged ranges of the parameters, the optimal dielectric thin films were deposited under RF power 100W with deposition temperatures at 400¢J, chamber pressure is 10mtorr. The dielectric constant of deposited thin films is 39.2 at 1MHz, the dissipation factor is 1.38¢H at 10kHz, leakage current is 2.61X10-7A/cm2 at 5V operating voltage and breakdown electric field of 0.29MV/cm is observed. The crystalline structures of deposited thin films were characterized by XRD and found amorphous structure. Film roughness was measured by Atomic Force Microscope (AFM) with 0.263 nm.

Page generated in 0.0137 seconds