• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Analysis and Improvement of a DC Magnetron Sputtering System

Lai, Ming-chih 20 July 2009 (has links)
The DC magnetron sputtering system (MSS) is used in microelectronic industries, and is a key device in the thin film depositions manufacturing process. The major influence factors of the DC magnetron sputtering system operational performance such as operational time and target utilization, which are due to unsatisfactory interactions between electrons and electromagnetic field inside the sputter. This study hopes to improve an established DC MSS, by employing commercial finite element analysis software that will be calculated the flux density, and using three-dimensional equation of motion to estimate the behavior of electrons inside the sputter; furthermore, in the light of the influence electrons position and speed, proposed refinements that the magnetic field above the target is controlled to make the performance improvement. Results from a study showed that the operational trajectory of the electrons at different magnetic flux density levels on top of the target after an operational period, the proposed refinements can increase the sputtering efficiency by as much as 30%. Other than that, through the similarities and dissimilarities between the additional magnetic fields and the main magnetic flux direction, the target erosion profiles with the refinements are more evenly spread out; reduction in the target material consumptions can also be expected.

Page generated in 0.1433 seconds