• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Non-DLVO Forces using an Evanescent Wave Atomic Force Microscope

McKee, Clayton T. 29 December 2006 (has links)
This dissertation describes new methods for measuring surface forces using evanescent waves, and applications to non-DLVO forces. An evanescent wave, generated at a solid-liquid interface, is scattered by AFM tips or particles attached to AFM cantilevers. The scattering of this wave is used to determine absolute separation between surfaces and/or the refractive index as a function of separation in AFM measurements. This technique is known as evanescent wave atomic force microscopy (EW-AFM). The scattering of an evanescent wave by Si3N4 AFM tips is large and decays exponentially with separation from a refractive index boundary. Thus, scattering is a useful method for measuring the separation between a Si3N4 tip and sample. This method has been used to measure the absolute separation between a tip and sample in the presence of an irreversibly adsorbed polymer film. Measurement of the film thickness and time response of the polymer to applied loads has also been studied. These measurements are not possible using current AFM techniques. In addition to measurements in polymer systems, the simple scattering profile from Si3N4 tips was used to re-examine short range hydration forces between hydrophilic surfaces. Results presented in this thesis suggest this force does not depend on the hydrated radius of the ion between glass and silicon nitride. The scattering generated by a Si3N4 tip has also been used to measure the refractive index of bulk fluids and thin films between hydrophobic surfaces. Based on these results, I have shown that a long-range attraction between hydrophobic surfaces is accompanied by an increase in the refractive index between the tip and surface. From this I have concluded that the attractive force, measured in this study, is the result of an increase in the concentration of organic material between surfaces. Finally, I have shown that the scattering profile depends on the material and size of the scattering object. Scattering from silicon nitride tips is exponential with separation. In contrast, the scattering profile from silicon tips, which are similar in size and geometry, is not a simple exponential. The scattering profile of larger spherical particles attached to cantilevers is also not exponential. It is approximately the sum of two exponentials. The functional form of the scattering profile with separation is consistent with the transmission of evanescent light through flat planar films. This result would suggest that a re-examination of the separation-dependence of scattering in TIRM measurements is necessary. / Ph. D.
2

Non-linear model fitting for the measurement of thin films and surface topography

Yoshino, Hirokazu January 2017 (has links)
Inspection of optical components is essential to assure the quality and performance of optical systems. Evaluation of optical components includes metrology measurements of surface topography. It also requires optical measurements including refractive index, thin film thickness, reflectivity and transmission. The dispersion characteristics of optical constants including refractive index are also required. Hence, various instruments are used to make these measurements in research laboratories and for quality assurance. Clearly, it would be a significant advantage and cost saving if a technique was developed that could combine surface metrology with optical measurements. {Coherence Scanning Interferometry} (CSI) (also referred to as {Scanning White Light Interferometry} (SWLI)) has been used widely to measure surface topography with sub-nanometre vertical resolution. One of the benefits of the CSI is that the technique is non-contacting and hence non-destructive. Thus the test surfaces are not affected by the measurement using a CSI instrument whereas damage to the surfaces can occur when using traditional contact methods such as stylus profilometry. However use of CSI is geometrically limited to small areas ($\lesssim 10 \times 10$ mm) with gentle slopes ($\lesssim \ang{40}$) because of the numerical aperture of objective lens whereas stylus profilometry works well with larger areas and higher slopes due to the range of motion of the gauge and the traverse unit. Since the CSI technique is optical and involves light reflection and interference it is possible to extend the technique for the measurement of the thickness of transparent films, the roughness of surfaces buried beneath thin films or interfacial surfaces. It may also be used to determine spectral complex refractive index. This thesis provides an analytical framework of new methods to obtain complex refractive index in a visible light domain and interfacial surface roughness (ISR). It also provides experimental verification of these new capabilities using actual thin film model systems. The original Helical Complex Field (HCF) function theory is presented followed by its existing extensions that enable determination of complex refractive index and interfacial surface roughness. Further theoretical extensions of the HCF theory are also provided: A novel theory to determine the refractive index of a (semi-)transparent film is developed to address the constraint of the current HCF theory that restricted its use to opaque materials; Another novel theory is provided to measure ISR with noise compensation, which avoids erroneous surface roughness caused by the numerical optimisation affected by the existence of noise. The effectiveness of the ISR measurement with noise compensation has been verified using a number of computer simulations. Stylus profilometry is a well established method to provide a profile and has been used extensively as a 'reference' for other techniques. It normally provides a profile on which the roughness and the waviness are computed. Extension of the stylus profilometry technique to areal measurement of asymmetrical surfaces, namely raster scan measurement, requires a system to include error compensation between each traverse. The system errors and the random errors need to be separately understood particular when the measurement of a surface with nanometre-order accuracy is required. In this thesis a mathematical model to locate a stylus tip considering five mechanical errors occurring in a common raster scan profilometer is provided. Based on the model, the simulator which provides an areal measurement of a sphere was developed. The simulator clarified the relationship between the Zernike coefficients obtained from the form residual and the size of the errors in the form of partial derivatives of Zernike coefficients with respect to the errors. This provides theoretical support to the empirical knowledge of the relationship between the coefficients and the errors. Furthermore, a method to determine the size of errors directly from Zernike coefficients is proposed supported by simulations. Some of the error parameters were accurately determined avoiding iterative computation with this method whereas the errors are currently being determined by iterative computation.

Page generated in 0.0985 seconds