• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor

Wilkinson, Andrea 10 June 2011 (has links)
Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected from AD of CTS at mesophilic temperatures in batch and by down-flow fixed film reactor. Experiments conducted include a series of biochemical methane potential (BMP) assays that investigated the digestion of CTS as the sole carbon source at a variety of food-to- microorganism ratios with and without acclimated biomass, under co-digestion conditions and also with the addition of supplemental nutrients. Additional BMP assays were conducted which investigated the potential to reduce fresh water consumption by using of digested effluent for substrate dilution. Continuous studies employed two 28L down-flow stationary fixed film reactors to examine. Chemical oxygen demand and volatile solids removal efficiencies greater than 85% were achieved up to an organic loading rate of 7.4 g TCOD/L/d and hydraulic retention time of 5 days.
2

Protein extraction from mustard (<i>B. juncea</i>(L.) Czern) meal using thin stillage

Ratanapariyanuch, Kornsulee 14 April 2009
Oilseeds may be processed to yield a number of potentially valuable compounds and fractions including oil, protein and small molecules. However, energy costs associated with industrial processing of oilseeds can be significant. For example, processes that use water to dissolve and separate materials are burdened with the costs associated with concentrating value-added products from dilute solutions. The ethanol industry produces large amounts of an aqueous solution called thin stillage that has little value and is used in animal feed. Thin stillage contains some of the necessary salts used in protein extraction but has a low pH. Protein extraction and protein isolate production is commonly conducted at higher pH. Waste alkali from biodiesel production has a high pH and can be used to adjust the pH of thin stillage to improve its ability to extract protein from oilseed meal. By combining the properties of the waste products of both the ethanol and the biodiesel industries, a complementary process is possible that may have greater economic potential than current practices in industry.<p> In this study, processes for protein extraction from mustard (<i>Brassica juncea</i> (L.) Czern.) meal using thin stillage from ethanol production and glycerol from biodiesel production were studied. The osmotic potential of thin stillage used in this research was lower than that of water, whereas both the density and the viscosity were higher. The pH was typically 3.7-3.8, and the total Kjeldahl nitrogen was approximately 0.080.10 %, w/w. Organic compounds identified in thin stillage were isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol and phenethyl alcohol. In addition, yeasts, bacteria and fungi were also found. Moreover, the salt types and their concentrations in thin stillage were predictable. The salt types present in thin stillage were CaCl2, NaCl, K2SO4, NaNO3, Mg(OH)2, Na2SO4 and KOH. A model thin stillage synthesized for the purposes of this research had components and chemical and physical properties comparable to those of thin stillage from ethanol production. Protein was extracted from ground, defatted meal using thin stillage at different pHs and salt concentrations. The results showed that pH and salt content affected protein extraction efficiency. However, no differences were found in the efficiency of extraction, SDS-PAGE profile, digestibility, lysine availability or amino acid composition of protein extracted with thin stillage, model thin stillage or sodium chloride solution. Moreover, extracted protein did not display significant hydrolysis. The results from peptide sequencing showed that napin and cruciferin were the most prevalent proteins in the extracted fractions. When increasing the scale of the extraction, the efficiency of protein extraction and the percentage of protein in the extracted protein were decreased. Protein recovery achieved with the complementary protocol was higher than that reported for a published protocol. Allyl isothiocyanate was found in protein extracts.
3

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor

Wilkinson, Andrea 10 June 2011 (has links)
Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected from AD of CTS at mesophilic temperatures in batch and by down-flow fixed film reactor. Experiments conducted include a series of biochemical methane potential (BMP) assays that investigated the digestion of CTS as the sole carbon source at a variety of food-to- microorganism ratios with and without acclimated biomass, under co-digestion conditions and also with the addition of supplemental nutrients. Additional BMP assays were conducted which investigated the potential to reduce fresh water consumption by using of digested effluent for substrate dilution. Continuous studies employed two 28L down-flow stationary fixed film reactors to examine. Chemical oxygen demand and volatile solids removal efficiencies greater than 85% were achieved up to an organic loading rate of 7.4 g TCOD/L/d and hydraulic retention time of 5 days.
4

Protein extraction from mustard (<i>B. juncea</i>(L.) Czern) meal using thin stillage

Ratanapariyanuch, Kornsulee 14 April 2009 (has links)
Oilseeds may be processed to yield a number of potentially valuable compounds and fractions including oil, protein and small molecules. However, energy costs associated with industrial processing of oilseeds can be significant. For example, processes that use water to dissolve and separate materials are burdened with the costs associated with concentrating value-added products from dilute solutions. The ethanol industry produces large amounts of an aqueous solution called thin stillage that has little value and is used in animal feed. Thin stillage contains some of the necessary salts used in protein extraction but has a low pH. Protein extraction and protein isolate production is commonly conducted at higher pH. Waste alkali from biodiesel production has a high pH and can be used to adjust the pH of thin stillage to improve its ability to extract protein from oilseed meal. By combining the properties of the waste products of both the ethanol and the biodiesel industries, a complementary process is possible that may have greater economic potential than current practices in industry.<p> In this study, processes for protein extraction from mustard (<i>Brassica juncea</i> (L.) Czern.) meal using thin stillage from ethanol production and glycerol from biodiesel production were studied. The osmotic potential of thin stillage used in this research was lower than that of water, whereas both the density and the viscosity were higher. The pH was typically 3.7-3.8, and the total Kjeldahl nitrogen was approximately 0.080.10 %, w/w. Organic compounds identified in thin stillage were isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol and phenethyl alcohol. In addition, yeasts, bacteria and fungi were also found. Moreover, the salt types and their concentrations in thin stillage were predictable. The salt types present in thin stillage were CaCl2, NaCl, K2SO4, NaNO3, Mg(OH)2, Na2SO4 and KOH. A model thin stillage synthesized for the purposes of this research had components and chemical and physical properties comparable to those of thin stillage from ethanol production. Protein was extracted from ground, defatted meal using thin stillage at different pHs and salt concentrations. The results showed that pH and salt content affected protein extraction efficiency. However, no differences were found in the efficiency of extraction, SDS-PAGE profile, digestibility, lysine availability or amino acid composition of protein extracted with thin stillage, model thin stillage or sodium chloride solution. Moreover, extracted protein did not display significant hydrolysis. The results from peptide sequencing showed that napin and cruciferin were the most prevalent proteins in the extracted fractions. When increasing the scale of the extraction, the efficiency of protein extraction and the percentage of protein in the extracted protein were decreased. Protein recovery achieved with the complementary protocol was higher than that reported for a published protocol. Allyl isothiocyanate was found in protein extracts.
5

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor

Wilkinson, Andrea 10 June 2011 (has links)
Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected from AD of CTS at mesophilic temperatures in batch and by down-flow fixed film reactor. Experiments conducted include a series of biochemical methane potential (BMP) assays that investigated the digestion of CTS as the sole carbon source at a variety of food-to- microorganism ratios with and without acclimated biomass, under co-digestion conditions and also with the addition of supplemental nutrients. Additional BMP assays were conducted which investigated the potential to reduce fresh water consumption by using of digested effluent for substrate dilution. Continuous studies employed two 28L down-flow stationary fixed film reactors to examine. Chemical oxygen demand and volatile solids removal efficiencies greater than 85% were achieved up to an organic loading rate of 7.4 g TCOD/L/d and hydraulic retention time of 5 days.
6

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor

Wilkinson, Andrea January 2011 (has links)
Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected from AD of CTS at mesophilic temperatures in batch and by down-flow fixed film reactor. Experiments conducted include a series of biochemical methane potential (BMP) assays that investigated the digestion of CTS as the sole carbon source at a variety of food-to- microorganism ratios with and without acclimated biomass, under co-digestion conditions and also with the addition of supplemental nutrients. Additional BMP assays were conducted which investigated the potential to reduce fresh water consumption by using of digested effluent for substrate dilution. Continuous studies employed two 28L down-flow stationary fixed film reactors to examine. Chemical oxygen demand and volatile solids removal efficiencies greater than 85% were achieved up to an organic loading rate of 7.4 g TCOD/L/d and hydraulic retention time of 5 days.
7

RECOVERY OF PROTEIN AND ORGANIC COMPOUNDS FROM SECONDARY-FERMENTED THIN STILLAGE

2016 February 1900 (has links)
Wheat-based thin stillage (W-TS) is liquid by-product of wheat ethanol production and contains valuable chemical intermediates such as 1,3-propanediol (1,3-PD), acetic acid, and glycerophosphorylcholine. Unfortunately, these compounds cannot be recovered/extracted easily due to the presence of high boiling point and hygroscopic solutes and unfermented particles from ethanol fermentation. Fermentation improvement study using endemic bacteria augmented with Lactobacillus panis PM1B discovered that glucose, incubation temperature, micronutrients, and pH adjustment affected two-stage fermentation (TSF). Importantly, fermentation could be scaled to a 210 L fermenter where 2% (w/v) 1,3-PD was produced. Unfermented particles should be removed prior to compound recovery. TSF was effective in producing solutions that were virtually free of colloids. Bacteria present in TSF system produced anoxic gas and exopolysaccharides and the combined action produced substantially clear solution. On the other hand, recovered particles, rich in lactobacilli, had a high protein content (50%, w/w, dry basis), which might be useful as an animal feed ingredient. Washing processes could lower moisture content and recover a high protein slurry (60% w/w, dry basis). Practical processes that incorporated fermentation using Lactobacilli could add substantial value to thin stillage and increase the value of products from ethanol production. These processes are scalable and readily implemented.

Page generated in 0.1002 seconds