• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Backfilling on Ground Control and Recovery in Thin-Seam Coal Mining

Donovan, James G. 27 May 1999 (has links)
A large percentage of Southern Appalachian coal reserves are located in seams less than 36" thick. As thicker and currently more mineable, deposits are exhausted, methods of underground thin-seam extraction will have to be developed. These methods must be capable of removing coal efficiently and economically. Past experience with highwall mining of thin-seam coal has indicated that recovery rates tend to be lower than in conventional operations. It is suspected that this will also apply to underground thin-seam mining, regardless of proposed technology or mining method. A method of increasing recoveries from thin-seam mining operations is necessary in order to exploit thin-seam reserves. Backfilling is one alternative that may find applicability in thin-seam coal mining. The ability of backfill to provide additional ground support may enhance coal recovery by allowing for the design of undersized pillars. Backfill has been used extensively in hard rock mining but has found limited use in coal mining. Its adaptability to thin-seam coal mining has been examined and is presented in this thesis. Backfill is capable of providing additional ground support by restricting lateral deformation of surrounding coal pillars and roof. This additional support can result in significant increases in recovery from thin-seam coal deposits. However, the overall feasibility of backfill is dependent on the in situ behavior of the fill material, the properties of the fill, the effects of the filling method on the total mining operation, and the cost of filling per extra ton of coal recovered. The influence of these parameters has been studied and indicate that, in certain situations, backfilling for the purpose of increasing recovery rates from thin-seam coal mines is feasible. / Master of Science
2

Development of an Underground Automated Thin-Seam Coal Mining Method

Holman, Darren Wayne 03 June 1999 (has links)
It is predicted that coal mining in Southwest Virginia, and the economic stability that it brings to the area, will continue to decline over the next decade unless an environmentally sound, and economically viable means can be found to extract seams of high quality coal in the thickness range of 14 to 28 inches. Research into autonomous machine guidance, coupled with developments of thin-seam mining equipment, offer new opportunities for devising mining layouts suitable for extracting these thin seams in a cost effective manner. These layouts must involve well-planned transportation and ventilation routes that will allow safe conditions for personnel. This implies that the mining face, where coal is extracted, will be completely automated, ensuring the safety of the workers. This thesis presents a brief overview of current technologies utilized for underground coal mining in the United States. This is followed by a review of developments in highwall mining that are potentially applicable in underground mining of thin seams. Some past attempts at thin seam mining are discussed, and evaluated for their short comings. An overview of the more recent advances in the guidance systems for use in autonomous mining machines is also presented. The new advances that several manufacturers are developing to address the integration of mining and continuous haulage systems are also investigated. That background is employed in devising a conceptual mining system for the underground mining of coal seams in the 14 to 28 inch range of thickness. This thesis proves that adapting new technologies and concepts from existing ones can lead to meaningful advances in the field of natural resources recovery. This system utilizes a newly designed panel layout that takes into account haulage, supplying, ventilation, equipment, and machine guidance. This system is proposed to show that new ways can be developed to take advantage of the reserves in the 14 to 28 inch range of thickness. This shows that new technology and design innovation can turn currently uneconomic resources, into economic reserves. This kind of innovation is what is needed to keep this region of Southwest Virginia economically viable. This system is a huge step in the direction that thin-seam research needs to take. Most of the equipment suggested for this proposed system is already available. / Master of Science
3

Feasibility of an Integrated Thin Seam Coal Mining and Waste Disposal System

Basu, Kohinoor 09 January 1998 (has links)
The depletion of more attractive thicker and easily accessible coal seams in the central Appalachia will direct attention towards the extraction of coal seams thinner than 28 in. This thesis investigates the feasibility of an integrated mining and backfilling system applicable to thin seams. Two conceptual mining systems, namely Auger mining and Self Advancing Miner, have been proposed for this purpose. Both these systems are designed to remotely mine coal from the seams. Several attempts were made in the past to mine coal in a similar fashion but were not very successful due to several problems inherent to thin seams. The lack of effective steering techniques, accurate coal/rock interface and pillar thickness detection techniques were the main shortcomings of the systems. These problems were addressed in the proposed conceptual mining systems. Several coal/rock interface and rib thickness detection techniques currently available in the market or in the prototype stage have been discussed. Recent developments in coal/rock interface detection and direction sensing techniques have good potential in alleviating the previously encountered problems. Sensitivity analyses have been performed to assess the of effect critical mining parameters on the production potential of these systems. The self advancing miner has been found to be more promising than auger mining. Conceptual panels and face layouts for both systems have been included. Two types of filling methods namely pneumatic and hydraulic are considered applicable under thin seam conditions. A backfilling technique using rubber hoses for fill placement can be applied with both methods. Sensitivity analysis have been performed to establish the relationship between face operation cost, filling cost per ton and development cost per foot. Resulting analyses indicate that panel cost per short ton of coal is more sensitive to filling cost than on development cost. / Master of Science

Page generated in 0.0271 seconds