• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of Haptens for the Marine Toxin, Gymnodimine; Synthesis of Beta-lactone Fused Carbocycles and Nitrogen Heterocycles; Efforts Toward the Synthesis of the Proposed Structure of Thiolyngbyan

Lee, Chang Suk 2010 May 1900 (has links)
Contamination of seafood by marine toxins has been a consistent public health problem. Gymnodimine (GYM) is a member of a family of spirocyclic imine containing marine natural products which was shown to be highly toxic (LD50 96 mg/kg, intraperitoneal injection); thus ensuring public safety requires stringent monitoring of gymnodimine. Current detection methods for GYM and spirolides include the mouse bioassay and LC-MS-based detection techniques which, however, have significant limitations. Therefore, more efficient and convenient detection methods are required. Building on our recently completed total synthesis of (-)-gymnodimine, the synthesis of two haptens were targeted for eventual production of monoclonal antibodies (mAb) to be used in an eventual Enzyme-Linked Immunosorbent Assay (ELISA) for gymnodimine. As an extension of the intramolecular nucleophilic catalyzed aldol lactonization (NCAL) process from aldehyde acid to keto acid substrates, carbocyclic and nitrogen heterocyclic B-lactones were synthesized. Demonstration of the utility of the NCAL process for keto acids was applied to the synthesis of dihydroplakevulin A and the core of tussilagine. In addition, although initial attempts to develop guanidine catalysts for the asymmetric NCAL process were unsuccessful, homobenzotetramisole (HBTM) was found to be a suitable asymmetric catalyst for keto acid substrates. Finally, synthetic studies toward the proposed structure of thiolyngbyan are described. Thiolyngbyan was isolated from a blue-green algae and it exhibited antifungal activity.

Page generated in 0.0373 seconds