• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Chalcogen-Centred Chiral Catalysts and Their Applications to Asymmetric Synthesis / カルコゲンを用いた不斉触媒の開発とその応用

Kawamata, Yu 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19515号 / 理博第4175号 / 新制||理||1599(附属図書館) / 32551 / 京都大学大学院理学研究科化学専攻 / (主査)教授 丸岡 啓二, 教授 大須賀 篤弘, 教授 依光 英樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
2

Towards the Total Synthesis of Thioviridamide: Thiyl Radical Approach to the Beta-Thioenamide Linkage Formation

Kang, Jung-hoon 22 December 2008 (has links) (PDF)
We developed an approach to the β-thioenamide linkage contained in the S-(2-aminovinyl)cysteine (avCys) residue of thioviridamide.1,2 Kinetic and thermodynamic control of radical additions of thiols to ynamides were studied for the formation of β-thioenamide linkage. Thiyl radicals are electrophilic and ynamides are electron-rich alkynes. This complementary polarity of the radical and acceptor increases the likelihood of a successful radical addition reaction. Because little is known about these types of compounds (β-thioenamides), we were unsure what kinds of yields and stereoselectivities (cis vs. trans) to expect. The adduct stability is another issue to consider. Fortunately, under typical radical addition conditions, the two separable isomers (cis and trans) are formed in good yield. Selective formation of kinetic (cis) and thermodynamic (trans) isomers are controlled by reaction time and equivalents of thiol. We converted the kinetic isomer to the thermodynamic isomer to confirm that isomerization can occur under the reaction conditions. Alkyl and aryl thiols including cysteine-derived thiols with different ynamides were used in this process.
3

Biomimetic Modeling of the Nitrogen-centered Radical Postulated to occur during the Inhibition of Ribonucleotide Reductases by 2'-Azido-2'-deoxynucleotides.

Dang, Thao P. 10 November 2010 (has links)
Ribonucleotide reductases (RNR) are essential enzymes that catalyze the reduction of ribonucleotides to 2'-deoxyribonucleotides, which is a critical step that produces precursors for DNA replication and repair. The inactivation of RNR, logically, would discontinue producing the precursors of the DNA of viral or cancer cells, which then would consequently end the cycle of DNA replication. Among different compounds that were found to be inhibitors of RNR, 2'-azido-2'-deoxynucleotide diphosphates (N3NDPs) have been investigated in depth as potent inhibitors of RNR. Decades of investigation has suggested that the inactivation of RNR by N3NDPs is a result of the formation of a nitrogen-centered radical (N•) that is covalently attached to the nucleotide at C3' and cysteine molecule C225 [3'-C(R-S-N•-C-OH)]. Biomimetic simulation reactions for the generation of the nitrogen-centered radicals similar to the one observed during the inactivation of the RNR by azionuclotides was investigated. The study included several modes: (i) theoretical calculation that showed the feasibility of the ring closure reaction between thiyl radicals and azido group; (ii) synthesis of the model azido nucleosides with a linker attached to C3' or C5' having a thiol or vicinal dithiol functionality; (iii) generation of the thiyl radical under both physiological and radiolysis conditions whose role is important in the initiation on RNR cascades; and (iv) analysis of the nitrogen-centered radical species formed during interaction between the thiyl radical and azido group by electron paramagnetic resonance spectroscopy (EPR). Characterization of the aminyl radical species formed during one electron attachment to the azido group of 2'-azido-2'-deoxyuridine and its stereospecifically labelled 1'-, 2'-, 3'-, 4'- or 5,6-[2H2]-analogues was also examined. This dissertation gave insight toward understanding the mechanism of the formation of the nitrogen-centered radical during the inactivation of RNRs by azidonucleotides as well as the mechanism of action of RNRs that might provide key information necessary for the development of the next generation of antiviral and anticancer drugs.

Page generated in 0.1742 seconds