Spelling suggestions: "subject:"threecompartment model"" "subject:"rearcompartment model""
1 |
Indoor residential fate model of phthalate plasticizersLiang, Yirui 14 February 2011 (has links)
A three-compartment model is extended to estimate the fate and transport of DEHP in a realistic residential environment. The model considered eight environmental media (i.e. air, particulate matter with six size fractions, vinyl flooring, carpet, furniture, dust, wall and ceiling). Particle movement (deposition and resuspension), dust removal (vacuuming), indoor cooking, and adsorption/absorption on indoor surfaces are included. The predicted airborne DEHP concentrations at steady state are within 0.1 [microgram]/m³ to 0.6 [microgram]/m³, which are similar to those measured in field studies. After vinyl flooring (the primary source) is removed, it takes 2 years for the indoor airborne DEHP level to reduce 0.01 [microgram]/m³, and the time increases significantly when carpet present. The results indicate that carpets as well as other interior surfaces may be important phthalate sinks and if the only removal mechanism is ventilation, strongly sorbing phthalate may persist for years. Phthalate amount in dust is strongly influenced by the deposition surface. The concentration of DEHP presents 10 times higher in dust on the source (vinyl flooring) than on the sink (furniture), and it takes more than a year for DEHP to reach equilibrium between bulk air and dust. The domestic activity of cooking is then included in the model and it shows that suspended particle concentration has a substantial impact on gas-phase DEHP level indoors, while the influence of ventilation is only to some extent. Three other SVOCs (DMP, BBP and DiDP) are also investigated and their environmental fates show that chemical’s vapour pressure and octanol/air partition coefficient have substantial influences on sorbing mechanisms and the gas phase and airborne concentrations. / text
|
2 |
Correlation analysis between resting metabolic rate, body composition and physical activity in active and inactive men and womenJonsson, Emma January 2012 (has links)
The objective of the present study was to explore the correlation between resting metabolic rate (RMR), body composition and physical activity in active and inactive men and women aged 20-30 years. In total, 13 active and 10 inactive women and 8 active and 5 inactive men were enrolled in this study. RMR was measured using an indirect respiratory calorimeter and body composition was obtained using a BodPod, anthropometric measurements (measurements of waist, weight, skin fold thickness etc.) and bioelectrical impedance analysis. From the BodPod were information obtained about fat-free mass (FFM) and fat mass (FM) and from the bioelectrical impedance analysis were data obtained about the total body water (TBW). By combining the data from these methods a three-compartment model could be produced. This gives a better value of the body composition. By using anthropometric measurements the muscle mass (MM) could be calculated. FFM measurements correlate best with RMR for both active men and women and for inactive women. For the inactive men MM correlates best with RMR. In conclusion, comparing the groups as a whole it is seen that the FFM correlates best with RMR for both women and men. Since the muscles are the metabolically active part of FFM it is concluded that muscles affects the RMR value and muscles can in turn be influenced by training.
|
Page generated in 0.0603 seconds