• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Symplectic Structure of Constrained Systems: Gribov Ambiguity and Classical Duals for 3D Gravity

Salgado Rebolledo, Patricio 28 October 2015 (has links)
The present thesis is divided into two parts. Part I is devoted to the study of Gribov ambiguity in gauge systems and its relation with the appearance of degeneracies in the symplectic structure of the corresponding reduced phase space after gauge fixation. Part II is concerned with classical dual field theories for three-dimensional Einstein gravity and the symplectic structure on coadjoint orbits of the corresponding asymptotic symmetry group.In Part I, the Gribov problem is studied in the context of finite temperature QCD and the structure of the gluon propagator is analyzed. The standard confined scenario is found for low temperatures, while for high enough temperatures deconfinement takes place and a free gluon propagator is obtained. Subsequently, the relation between Gribov ambiguity and degeneracies in the symplectic structure of gauge systems is analyzed. It is shown that, in finite-dimensional systems, the presence of Gribov ambiguities in regular constrained systems always leads to a degenerate symplectic form upon Dirac reduction. The implications for the Gribov-Zwanziger approach to QCD and the symplectic structure of the theory are discussed. In Part II, geometrical actions for three-dimensional Einstein gravity are constructed by studying the symplectic structure on coadjoint orbits of the asymptotic symmetry group. The geometrical action coming from the Kirillov-Kostant symplectic form on coadjoint orbits is analyzed thought Dirac's algorithm for constrained systems. By studying the case of centrally extended groups and semi-direct products, the symplectic structure on coadjoint orbits of the Virasoro and the BMS3 group are analyzed. This allows one to associate separate geometric actions to each coadjoint orbit of the solution space, leading to two-dimensional dual fiel theories for asymptotically AdS and asymptotically flat three-dimensional gravity respectively. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
2

New Applications of Asymptotic Symmetries Involving Maxwell Fields

Mao, Pujian 28 September 2016 (has links)
In this thesis, several new aspects of asymptotic symmetries have been exploited.Firstly, we have shown that the asymptotic symmetries can be enhanced tosymplectic symmetries in three dimensional asymptotically Anti-de Sitter (AdS) space-time with Dirichletboundary conditions. Such enhancement providesa natural connection between the asymptotic symmetries in the far region i.e. closeto the boundary) and the near-horizon region, which leads to a consistenttreatment for both cases. The second investigation in three dimensional space-time is to study theEinstein-Maxwell theory including asymptotic symmetries, solutionspace and surface charges with asymptotically flat boundary conditionsat null infinity. This model allows one to illustrate several aspectsof the four dimensional case in a simplified setting. Afterwards, we givea parallel analysis of Einstein-Maxwell theory in the asymptotically AdScase.Another new aspect consists in demonstrating a deep connection between certainasymptotic symmetry and soft theorem. Recently, a remarkable equivalence wasfound between the Ward identity of certain residual (large) U(1) gauge transformations and the leadingpiece of the soft photon theorem. It is well known that the softphoton theorem includes also a sub-leading piece. We have proven thatthe large U(1) gauge transformation responsible for the leading soft factorcan also explain the sub-leading one.In the last part of the thesis, wewill investigate the asymptotic symmetries near the inner boundary. Asa null hypersurface, the black hole horizon can be considered as an innerboundary. The near horizon symmetries create “soft” degrees of freedom. Wehave generalised such argument to isolated horizon and have shown that those “soft” degreesof freedom of an isolated horizon are equivalent to its electric multipolemoments. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
3

Strings, links between conformal field theory, gauge theory and gravity

Troost, Jan 20 May 2009 (has links) (PDF)
La théorie de cordes unifie de façon naturelle les théories de jauge, qui décrivent les interactions entre les particules élémentaires, avec une théorie quantique de la gravitation. Ces dernières années ont apporté de grands progrès dans la compréhension des états non-perturbatifs de la théorie, ses aspects holographiques, ainsi que la construction de modèles proches du Modèle Standard. Néanmoins, il reste des défis pour la théorie de cordes, qui incluent une définition non-perturbative, une meilleure compréhension de l'holographie, et le problème de la constante cosmologique. Ma recherche s'est concentrée sur des aspects formels des théories de gravitation quantique, qui incluent les trous noirs, la dépendance du temps, et l'holographie. Gr^ace à de nouveaux résultats dans le domaine de la théorie conforme avec spectre continu, mes collaborateurs et moi-m^eme avons avancé dans la compréhension de l'holographie dans des fonds avec dilaton linéaire, ainsi que dans le plongement de théories de jauge supersymétriques dans la théorie de cordes. En particulier, on a étudié des théories conformes supersymétriques avec spectre continu que l'on utilise pour construire des fonds de théories de cordes non-compacts et courbés. Les résultats obtenus nous ont permis de décrire des exemples explicites de symétrie miroir pour des fonds non-compacts. En introduisant des bords dans les théories conformes, on a analysé des états non-perturbatifs de la théorie de cordes, les D-branes. A basse énergie, les degrés de liberté sur les D-branes interagissent par des interactions de jauge. Avec ces outils, on a réussi à plonger une dualité infrarouge de théorie de jauge supersymétrique dans la théorie de cordes, et on a montré que la dualité correspond à une monodromie pour les états de bord dans l'espace de modules de la théorie conforme.<br><br> Dans cette thèse, on discute de nombreux autres liens entre la théorie conforme, la théorie de jauge et la gravitation. La plupart des contributions décrites étaient motivées par la théorie de cordes. Des exemples sont l'analyse d'états qui préservent la supersymétrie et leur lien avec les algèbres affines, la dépendance du temps et le dictionnaire holographique, l'analyse directe de la quantification de la gravité en présence d'un trou noir, la réalisation du scenario sans-bord pour la fonction d'onde de l'univers en théorie de cordes, une formule de Verlinde pour les théories conformes non-rationnelles et la construction de solutions non-géometriques à la supergravité. Dans d'autres travaux, je me suis concentré sur des théories qui quantifient la gravité plus directement, mais qui pourraient avoir moins de succès dans le problème de l'unification des forces en quatre dimensions. Ces théories ont quand-m^eme le potentiel de nous apprendre des aspects communs à toute théorie de gravitation quantique. Par exemple, on a analysé les degrés de liberté responsables de l'entropie d'un trou noir en trois dimensions, et nous avons argumenté sur la difficulté de reconcilier l'invariance modulaire avec l'unitarité en dehors de la théorie de cordes. On a aussi discuté la diffusion de ces trous noirs. D'autres contributions à la théorie de jauge non-commutative, la théorie de jauge supersymétrique, la production de paires dans un espace courbe, et cetera, sont aussi relativement indépendantes du cadre de la théorie de cordes.<br><br> Il me semble qu'il reste intéressant d'étudier des questions difficiles sur la théorie de jauge et la gravitation quantique, dans la cadre de la théorie de cordes, et en dehors de ce cadre, et d'^etre guidé par des problèmes ouverts durs qui doivent mener à un progrès concret par incréments ou par sauts.
4

Making Maps and Keeping Logs : Quantum Gravity from Classical Viewpoints

Johansson, Niklas January 2009 (has links)
This thesis explores three different aspects of quantum gravity. First we study D3-brane black holes in Calabi-Yau compactifications of type IIB string theory. Using the OSV conjecture and a relation between topological strings and matrix models we show that some black holes have a matrix model description. This is the case if the attractor mechanism fixes the internal geometry to a conifold at the black hole horizon. We also consider black holes in a flux compactification and compare the effects of the black holes and fluxes on the internal geometry. We find that the fluxes dominate. Second, we study the scalar potential of type IIB flux compactifications. We demonstrate that monodromies of the internal geometry imply as a general feature the existence of long series of continuously connected minima. This allows for the embedding of scenarios such as chain inflation and resonance tunneling into string theory. The concept of monodromies is also extended to include geometric transitions: passing to a different Calabi-Yau topology, performing its monodromies and then returning to the original space allows for novel transformations. All constructions are performed explicitly, using both analytical and numerical techniques, in the mirror quintic Calabi-Yau. Third, we study cosmological topologically massive gravity at the chiral point, a prime candidate for quantization of gravity in three dimensions. The prospects of this scenario depend crucially of the stability of the theory. We demonstrate the presence of a negative energy bulk mode that grows logarithmically toward the AdS boundary. The AdS isometry generators have non-unitary matrix representations like in logarithmic CFT, and we propose that the CFT dual for this theory is logarithmic. In a complementing canonical analysis we also demonstrate the existence of this bulk degree of freedom, and we present consistent boundary conditions encompassing the new mode.

Page generated in 0.1089 seconds