• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photolyase: Its Damaged DNA Substrate and Amino Acid Radical Formation During Photorepair

Hurley, E. Kenneth 03 February 2005 (has links)
Ultraviolet light damages genomic material by inducing the formation of covalent bonds between adjacent pyrimidines. Cis-syn cyclobutane pyrimidine dimers (CPD)constitute the most abundant primary lesion in DNA. Photolyase, a light-activated enzyme, catalytically repairs these lesions. Although many steps in the photolyase-mediated repair process have been mapped, details of the mechanism remain cryptic. Difference FT-IR spectroscopy was employed to obtain new mechanistic information about photorepair. Purified oligonucleotides, containing a central diuracil, dithymidine, or cyclobutane thymidine dimer, were monitored using vibrational methods. Construction of difference infrared data between undamaged and damaged DNA permitted examination of nucleic acid changes upon formation of the CPD lesion; these experiments indicated that C=O and C-H frequencies can be used as markers for DNA damage. Furthermore, in purified photolyase containing isotopically-labeled aromatic amino acids, we observed that tryptophan residues in photolyase underwent structural changes during photorepair. These data indicate that electron transfer during DNA repair occurs through-bond, and that redox-active, aromatic residues form the pathway for electron transfer. / Master of Science
2

Inhibition of DNA Repair in Ultraviolet-Irradiated Human Cells by Hydroxyurea

Francis, Andrew A., Blevins, R. Dean, Carrier, William L., Smith, David P., Regan, James D. 26 July 1979 (has links)
The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonucleasesensitive sites in irradiated DNA. Little effect of hydroxyurea was observed at the concentration of 2 mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65-70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well.
3

Relationship Between the Kinetics of Thymine Dimer Formation and the Excited State Dynamics of DNA

Law, Yu Kay 15 September 2010 (has links)
No description available.
4

MOLECULAR DYNAMICS SIMULATIONS OF SPORE PHOTOPRODUCT CONTAINING DNA SYSTEMS

Mellisa Mudukuti Hege (15322852) 18 May 2023 (has links)
<p>Bacterial endospores have been a topic of research interest over the last several decades given their high resistance to ultraviolet (UV) damage. Unlike vegetative bacterial cells, which form cyclobutane pyrimidine dimers (CPD) and pyrimidine 6-4 pyrimidone photoproducts (6-4PPs) as the major product upon UV irradiation, endospore bacteria form a spore photoproduct (5-(<em>R</em>-thyminyl)-5,6-dihydrothymine or SP) as the major product. Vegetative bacteria cells are subject to regular cell activities and processes such as division and deoxyribonucleic acid (DNA) replication, which are prone to damage from UV exposure. However, in endospores, which have a largely anhydrous inner environment, the DNA remains dormant when bound to spore-specific small acid-soluble proteins (SASP) and dipicolinic acid, making spores highly resistant to radiation, heat, desiccation, and chemical harm. During spore germination, SP lesions in DNA are repaired by a distinctive repair enzyme, spore photoproduct lyase (SPL). In this thesis, molecular dynamics (MD) simulations were carried out to (i) examine how the formation of the SP lesion in DNA affects the global and local structural properties of duplex DNA and (ii) study how this lesion is recognized and repaired in endospore. The first part of this work was focused on designing and developing a structurally and dynamically stable model for dinucleotide SP molecule (TpT), which was subsequently used as an SP patch incorporated into duplex DNA. Computationally, this requires modifications of the bond and nonbonded force field parameters. The stability of the patch and developed parameters was tested via solution-phase MD simulations for the SP lesion incorporated within the B-DNA dodecamer duplex (PDB 463B). The second part involved applying the new SP patch to simulate the crystallographic structure of the DNA oligomer containing SP lesions. Solution-phase MD simulations were performed for the SP-containing DNA oligomers (modeled based on PDB 4M94) and compared to the simulations of the native structure (PDB 4M95). Our analysis of the MD trajectories revealed a range of SP-induced structural and dynamical changes, including the weakened hydrogen bonds at the SP sites, increased DNA bending, and distinct conformational stability and distribution. In the third part of this thesis project, we carried out MD simulations of SP-containing DNA bound with SASPs to examine how the DNA interacts differently with SASP in the presence and absence of the SP lesion. The simulation results suggested decreased electrostatic and hydrogen bonding interactions between SASP and the damaged DNA at the SP site compared to the undamaged DNA-protein complex. In addition, decreased helicity percentage was observed in the SASPs that directly interact with the SP lesion. The last part of this this thesis work focused on the SP-dimer flipping mechanism, as the lesion is likely flipped out to its extrahelical state to be recognized and repaired by SPL. Using steered molecular dynamic (SMD) simulations and a pseudo-dihedral angle reaction coordinate, we obtained possible SP flipping pathways both in the presence and absence of SASP. Collectively, these simulation results lend new perspectives toward understanding the unique behavior of the SP lesion within the DNA duplex and the nucleoprotein complex. They also provide new insights into how the SP lesion is efficiently recognized and repaired during spore germination.</p>

Page generated in 0.0652 seconds