• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Salinity Transport in a Finite-Volume Sigma-Layer Three-Dimensional Model

Retana, Angel Gabriel 19 December 2008 (has links)
The objective of this study was to develop a 3-D model for The Pontchartrain Estuary that was capable of long-term mass conservative simulation of salinities. This was accomplished in a multi-stage approach involving: a physical model of salinity exchange through a pass; a 3-D FVCOM model of the physical experiment; the development and testing of an FVCOM model for an idealized Pontchartrain Basin; and for the entire estuary. The data from the physical model tests were used to validate the performance of the FVCOM model with density-driven flows. These results showed that hydrostatic FVCOM captured the primary internal wave movement. The idealized basin simulations were used to evaluate several issues related to salinity transport, namely the relative importance of baroclinic forcing, tidal forcing and hydrology. The idealized domain also permitted the testing of sigma-gradients, spatial distribution of friction coefficients, wind stress and various boundary treatments. The results showed that the density-driven exchange of saltwater at the open boundary required a baroclinic boundary condition for salinity as well as a lateral filter at the boundary on each sigma layer. A new radiative baroclinic open boundary condition was developed for FVCOM. When tides and hydrology were included, the FVCOM model was shown to reproduce the seasonal salinity that has been observed for long-term periods. It was also found that the simulation of tides and salinity in FVCOM is very sensitive to the spatial distribution of the friction coefficient; relatively low friction was required in the open water regions and high friction was needed in the passes and waterways to reproduce the tides and salinity distribution. A variable friction coefficient option was coded on FVCOM. The findings from the idealized model were utilized to setup two models for the actual estuary. Both models extend from Lake Maurepas, one to the Chandeleurs Islands and the other to Mobile Bay. The baroclinic open boundary and variable friction were implemented in these models. They were calibrated for tides and salinity. The 2008 Bonnet Carré Spillway Opening was applied to the first model. A tidal pumping effect in Lake Pontchartrain was observed and captured by the model.
2

Degradation of Deepwater Horizon Oil Buried in a Florida Beach Influenced by Tidal Pumping

Huettel, Markus, Overholt, Will A., Kostka, Joel E., Hagan, Christopher, Kaba, John, Wells, Wm Brian, Dudley, Stacia 01 January 2018 (has links)
After Deepwater Horizon oil reached the Florida coast, oil was buried in Pensacola Beach (PB) sands to ~ 70 cm depth, resulting in Total Petroleum Hydrocarbon (TPH) concentrations up to ~ 2 kg per meter of beach. This study followed the decomposition of the buried oil and the factors influencing its degradation. The abundance of bacteria in oiled sand increased by 2 orders of magnitude within one week after oil burial, while diversity decreased by ~ 50%. Half-lives of aliphatic and aromatic hydrocarbons reached 25 and 22 days, respectively. Aerobic microbial oil decomposition, promoted by tidal pumping, and human cleaning activities effectively removed oil from the beach. After one year, concentrations of GC-amenable hydrocarbons at PB were similar to those in the uncontaminated reference beach at St. George Island/FL, and microbial populations that disappeared after the oil contamination had reestablished. Yet, oxihydrocarbons can be found at PB to the present day.
3

Tidal Controls on Denitrification in Coastal Streambeds

Knights, Deon Hanley 27 September 2016 (has links)
No description available.
4

The Sedimentology of Pecausett Pond: A Case Study for Sediment and Contaminants Sotrage in FloodPlain Tidal Ponds on the Lower Connecticut River

Elzidani, Emhmed Z 01 January 2011 (has links) (PDF)
In this study I assess spatial and temporal patterns of sediment deposition in Pecausett Pond, located along the tidal extent of the Connecticut River, in order to assess the role of tides in the transport and storage of sediment and associated contaminants within floodplain tidal ponds. Findings reveal that tidal ponds have significantly higher rates of sedimentation compared to neighboring marshes due to the fact that these ponds have more accommodation space and receive uninterrupted tidal exchange with the main river. Tidal tie channels introduce a pulse of suspended sediment and contaminants from the main river into these ponds each flood tide, with sedimentation rates fast enough to allow settling before the subsequent ebb tide can transport these sediments back to the main river (i.e. tidal pumping). Some studies performed on the tidal floodplain of the Connecticut River show high deposition rates and have attributed periods of high accumulation to anomalously high river discharge events. However, this project shows that tides are more likely the major mechanism responsible for transporting and storing sediment and associated contaminants at backwater sites located along the tidal floodplain. Deposition rates in this 3-4 m deep pond exceed 2 cm/yr. These rates are far too high to maintain equilibrium morphology for much longer. However, ground penetrating radar surveys from the study site reveal truncated stratigraphy common to erosional unconformities, which suggest that mechanisms for sediment remobilization and removal may exist. Periods of episodic erosion therefore may be helping to maintain the morphology in this shallow environment, and allow for the high rates of short-term deposition. Further, a sudden increase in percent inorganic potentially associated with the opening or clearance of the tie-channel is observed at a sediment depth approximately between 1.9 to 2.2 m. A radiocarbon date obtained below this transition is consistent with a significant drop in sedimentation prior to this tie-channel development. High rates of sedimentation in Pecausett Pond are therefore likely relatively recent phenomena, transpiring over the last few centuries following early colonization.

Page generated in 0.0567 seconds