• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sedimentology, Ichnology and Stratigraphy of the Clearwater Formation, Cold Lake, Alberta

Currie, Carolyn Frances Unknown Date
No description available.
2

Depositional systems and sequence stratigraphy of the M1 sandstone in Tarapoa, Ecuador

Ye, Yu 02 February 2015 (has links)
Campanian M1 Sandstone is one of the major prospective sandstone units in the Tarapoa field in Oriente Basin, Ecuador. The M1 Sandstone is always markedly sharp based, averages 25 m in thickness, shows upward increasing marine bioturbation and generally fines upward from coarse to very fine grained sandstone. In cores, the sandstones at base are amalgamated coarse to fine grained with prominent cross stratification (dm thick), sometimes clearly bi-directional and contains mud drapes. These suggest strong tidal or fluvial-tidal currents in estuary channels or delta distributary channels. The finer grained intervals in the middle are brackish-water intensely bioturbated and dominated by mud drapes, wavy and flaser bedding suggestive of intertidal flats. Associated overlying coals and coaly shales suggest supratidal conditions. The sandstones at top are cross stratified and contain mud drapes. These again suggest strong tidal or fluvial-tidal currents in estuary channels or delta distributary channels. The stacking pattern of facies in M1 Sandstone reveals the evolution of the M1 depositional system, as well as the sequence stratigraphy of M1 sandstone. The evolution includes four stages of deposition which indicates an initial sea level rise, a subsequent sea level fall, and another sea level rise. Lateral sand-mud heterogeneity exists in the study area, forming “shale barriers”, i.e. elongate shale-rich zones that are lateral barriers to hydrocarbon migration. They are interpreted to be abandoned tidal channels filled with muddy tidal flat deposits during the sea level fall. An alternative hypothesis was established to explain the stacking pattern of facies in M1 Sandstone. A tide-dominated delta with poor fluvial input experienced intense tidal erosion and produced a sharp base at the base of M1 Sandstone. Then subtidal sand bars, intertidal flats, and supratidal sediments were deposited in sequence during a continuous regression. The core and well logs in an extension of the study area in the northwest is interpreted as more distal open shelf deposits, beyond the mouth of the Tarapoa estuary system, where transgressive tidal shelf ridges were coeval with the Tarapoa estuary system. This interpretation allows us to predict the environment between the two areas as a transition zone between tide-dominated estuary and open shelf. / text
3

Storm- and Tide-Dominated Shoreface Deposits, Milk River Formation (Upper Cretaceous), Southern Alberta

Clarke McCrory, Vernon Leslie 04 1900 (has links)
<p> Several sections of the Milk River Formation were measured and studied in detail at Writing on Stone Provincial Park in Southern Alberta. The observed vertical facies succession consists of, from base to top: 1) interbedded, sharp-based sandstones and bioturbated shales; 2) dominantly swaley cross-stratified sandstones; 3) dominantly cross-bedded sandstones; 4) non-marine shales and various thin sandstone and lignite interbeds; 5) local, non-marine cross-bedded sandstones.</p> <p> The sharp-based sandstones have been episodically emplaced on top of offshore muds. The dominantly swaley cross-stratified sandstone is a storm-dominated shoreface deposit in which fairweather deposits (eg. medium scale cross-bedding), are rarely preserved. The cross-bedded sandstones record deposition in tidally-influenced estuaries which cut into beach and shoreface deposits. The section is capped by vertically accreted muds and thin lignite seams which represent floodplain and terrestrial deposition landwards of the strandline. The non-marine cross-bedded sandstones are local representatives of fluvial channel deposits.</p> <p> Paleoflow directions measured in the cross-bedded sandstones indicate that the regional strandline was oriented southwest - northeast at Writing on Stone.</p> <p> Petrographic analysis of the swaley cross-stratified and cross-beddedm sandstones indicate that they are Subarkoses. A definite upward coarsening trend from fine to medium grained quartz is observed in the main sandstone body.</p> / Thesis / Bachelor of Science (BSc)
4

3-D structural and seismic stratigraphic interpretation of the Guasare-Misoa Interval, VLE 196 Area, Block V, Lamar Field, Lake Maracaibo, Venezuela

Arzuman, Sadun 30 September 2004 (has links)
In this study, the structure, depositional system, and the seismic stratigraphy of the VLE 196 area, Block V in Lamar Field were interpreted using 3-D seismic data and well logs to characterize structural and depositional settings of the Guasare-Misoa interval. To demonstrate structural settings of the study area 3-D seismic data were interpreted. Three main seismic reflectors, which are the Late Eocene unconformity, Guasare, and La Luna formations, were picked. The most dominant structure in the area is the VLE 400 Fault which was interpreted as a left-lateral strike-slip reverse fault due to its behaviors as a reverse fault in cross sections and as a strike-slip fault in strike sections. The VLE 400 Fault subdivides the VLE 196 area into two main structural blocks, a downthrown block in the western part and the upthrown block in the eastern part of the field where the hydrocarbons were trapped. Several en echelon normal and reverse faults were located along the both sides of the area. The main importance of these faults are that they fractured the La Luna source rock and created migration pathways through the reservoir layers of the Misoa Formation. To interpret depositional system of the Guasare-Misoa interval, tops of the C4 and C5 intervals and associated C4 layers were picked based on well logs and lithofacies maps were prepared. The results of this part of the study show that the sandstones of the Misoa Formation are delta front and fluvial/distributary channel facies of delta system. The net sand thickness map of the C4 interval also exhibits southeast northwest contour patterns reflecting depositional axes in the area. Shaly units of the C4 interval interpreted as potential seals and are of variable thickness and extend. Seismic stratigraphic interpretation of the area shows that the four main seismic facies are dominant which mainly represent the recent sediments, "C" sands of the Misoa Formation, underlying Colon and Mito Juan shales, and basement respectively. Some distributary eroded channel fill structures were also observed within the Misoa Formation, but they were not continuous through the area because of the intensive faulting.

Page generated in 0.0457 seconds