• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of vertical reinforcement in slender reinforced concrete (tilt-up) panels with openings & subject to varying wind pressures

Bartels, Brian D. January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / This report offers a parametric study analyzing the vertical reinforcement for slender reinforced concrete walls (tilt-up panels) subject to 90 miles per hour (mph), 110 mph, 130 mph, and 150 mph three-second gust wind speeds. Wall panel heights of 32 feet (ft) and 40 ft are considered for one-story warehouse structures. First, solid tilt-up panels serve as the base design used in the comparison process. Next, square openings of 4 ft, 8 ft, 12 ft, and 16 ft centered in the wall panel, are analyzed. A total of 32 tilt-up panel designs are conducted, establishing the most economical design by the least amount of reinforcement and concrete used. In addition to lateral wind pressures, the gravity loads acting on the load bearing tilt-up panel are dead load, roof live load, and snow load. All loads for this report are determined based on a typical 24 ft by 24 ft bay. The procedure to design the tilt-up panels is the Alternative Design of Slender Walls outlined in the American Concrete Institute standard ACI 318-08 Building Code Requirements for Structural Concrete and Commentary Section 14.8 In general, an increase in panel height, lateral wind pressure, and/or panel openings, requires an increase in reinforcement to meet strength and serviceability. Typical vertical reinforcement in tilt-up panels is #4, #5, and #6 size reinforcement bars. A double-mat reinforcement scheme is utilized when the section requires an increase in reinforcement provided by use of a single-layer of reinforcement. A thicker tilt-up panel may be needed to ensure tension-controlled behavior. Panel thicknesses of 7.25 inches (in), 9.25 in, and 11.25 in are considered in design.
2

Analysis of assumptions made in design of reinforcement in Slender Reinforced Concrete (Tilt-Up) panels with openings

Schwabauer, Brandon January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / This report uses and references (Analysis of Vertical Reinforcement in Slender Reinforced Concrete (Tilt-up) Panels with Openings & Subject to Varying Wind Pressures) (Bartels, 2010) to investigate the design philosophy and assumptions used in Section 14.8 of the ACI 318-08 (ACI Committee 318, 2008). The design philosophy and assumptions are analyzed to determine the applicability and accuracy of Section 14.8 of the ACI 318-08 (ACI Committee 318, 2008) to the design and analysis of slender concrete panels with openings. Special emphasis is placed on identifying and quantifying the degree of effect that each assumption has on the final design of the panel. These topics include stress distribution around openings, the effect of varying stiffness of the member on the P-delta effect, stiffness variations due to workmanship and tolerances, and the effect of axial load on the stiffness of the member. This is accomplished through the use of specially designed computer analyses that isolate an assumption or effect to determine its impact on the final design. This study shows that two-way effects are almost non-existant, the portion of the panel above the opening has very little effect on the P-delta effects, the code specified reduction in bending stiffness due to workmanship and tolerances appear to be appropriate, and the effective area of reinforcement overestimates the stiffness of the panel.

Page generated in 0.0738 seconds