• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dosimetry of ionizing radiation with an artificial neural network : With an unsorted, sequential input

Appelsved, Ivan January 2018 (has links)
In this thesis the verification of a neural network’s proficiency at labeling ionizing radiation particles from the unsorted output of a timepix3 camera is attempted. Focus is put on labeling single particles in separate data sequences with slightly preprocessed input data. Preprocessing of input data is done to simplify the patterns that should be recognized. Two major choices were available for this project, Elman-network and Jordan-network. A more complicated type was not an option because of the longer time needed to implement them. The network type chosen was Elman because of freedom in context size. The neural network is created and trained with the TensorFlow API in python with labeled data that was not created by hand. The network recognized the length difference between gamma particles and alpha particles. Beta particles were not considered by the network. It is concluded that the Elman-style network is not proficient in labeling the sequences, which were considered short enough and to have simple enough input data. A more modern network type is therefore likely required to solve this problem.

Page generated in 0.1228 seconds