• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trace element geochemistry of authigenic heavy minerals in reservoir sandstones

Bouch, Jonathan E. E. January 1996 (has links)
Authigenic growths of heavy minerals, crystallised under relatively low temperature diagenetic conditions have been recognised in a number of sedimentary sequence. A range of microbeam techniques have revealed trace element geochemical variations on several scales in authigenic titanites and apatites. These variations occur, within individual cement grains and patches, within a single sedimentary sequence, and between different sedimentary sequences. Mixed fluvial-aeolian, Permian, sediments at the Cock of Arran (Isle of Arran, Scotland) contain pore filling titanite cements. The titanites show a range of zoning patterns, dominated by compositional sector zones. The sector zones are defined by large (order of magnitude) differences in rare earth element (REE) and high field strength element (HFSE) concentrations between titanite grown at different crystal faces. The mechanism responsible for sector zone formation is considered to relate to differences in the surface structure of titanite at different crystal faces. Faces of the forms { 100 } and { 001 } are likely to have surface configurations more amenable for impurity element incorporation than faces of the form { 161 }. This evidence for disequlibirium titanite growth, and the large differences which must exist between effective partition coefficients at different titanite crystal faces, makes models of equilibrium trace element partitioning effectively meaningless. Minor growth zones are also present and relate to subtle differences in the REE composition of the titanite. These variations have been used to construct a model of titanite-fluid REE partitioning which suggests that the HREE have higher effective titanite-fluid partition coefficients than the LREE. In the continental Statfjord Formation (Jurassic, North Viking Graben) authigenic apatite occurs as overgrowths on variably corroded detrital cores. The authigenic apatite is chemically very distinct from the detrital apatite and contains high concentrations of Sr, REE, F, and probable concentrations of C.
2

EV Battery Performance in the Desert Area and Development of a New Drive Cycle for Arizona

January 2018 (has links)
abstract: Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET, US-06 drive schedules, respectively. These drive schedules have been combined into a custom drive cycle, named the AZ-01 drive schedule, designed to simulate a typical commute in the state of Arizona. The battery cell cycling is conducted at various temperature settings (0, 25, 40, and 50 °C). At 50 °C, under the AZ-01 drive schedule, a severe inflammation was observed in the cells that led to cell failure. Capacity fading under AZ-01 drive schedule at 0 °C per 100 cycles is found to be 2%. At 40 °C, 3% capacity fading is observed per 100 cycles under the AZ-01 drive schedule. Modeling and prediction of discharge rate capability of batteries is done using Electrochemical Impedance Spectroscopy (EIS). High-frequency resistance values (HFR) increased with cycling under the AZ-01 drive schedule at 40 °C and 0 °C. The research goal for this thesis is to provide performance analysis and life cycle data for Li4Ti5O12 (Lithium Titanite) battery cells in simulated Arizona conditions. Future work involves an evaluation of second-life opportunities for cells that have met end-of-life criteria in EV applications. / Dissertation/Thesis / Masters Thesis Engineering 2018
3

Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden

Guenthner, William R., Reiners, Peter W., Drake, Henrik, Tillberg, Mikael 07 1900 (has links)
Craton cores far from plate boundaries have traditionally been viewed as stable features that experience minimal vertical motion over 100-1000Ma time scales. Here we show that the Fennoscandian Shield in southeastern Sweden experienced several episodes of burial and exhumation from similar to 1800Ma to the present. Apatite, titanite, and zircon (U-Th)/He ages from surface samples and drill cores constrain the long-term, low-temperature history of the Laxemar region. Single grain titanite and zircon (U-Th)/He ages are negatively correlated (104-838Ma for zircon and 160-945Ma for titanite) with effective uranium (eU=U+0.235xTh), a measurement proportional to radiation damage. Apatite ages are 102-258Ma and are positively correlated with eU. These correlations are interpreted with damage-diffusivity models, and the modeled zircon He age-eU correlations constrain multiple episodes of heating and cooling from 1800Ma to the present, which we interpret in the context of foreland basin systems related to the Neoproterozoic Sveconorwegian and Paleozoic Caledonian orogens. Inverse time-temperature models constrain an average burial temperature of similar to 217 degrees C during the Sveconorwegian, achieved between 944Ma and 851Ma, and similar to 154 degrees C during the Caledonian, achieved between 366Ma and 224Ma. Subsequent cooling to near-surface temperatures in both cases could be related to long-term exhumation caused by either postorogenic collapse or mantle dynamics related to the final assembly of Rodinia and Pangaea. Our titanite He age-eU correlations cannot currently be interpreted in the same fashion; however, this study represents one of the first examples of a damage-diffusivity relationship in this system, which deserves further research attention.
4

Implications of Geochemistry and Textures of Titanite for the Geologic Histories of the Notch Peak Intrusion and Little Cottonwood Stock, Utah

Henze, Porter 27 July 2020 (has links)
Textural and compositional variations in titanite, along with whole-rock geochemistry, provide constraints on the emplacement and cooling histories of two plutons: the Jurassic Notch Peak pluton and the Oligocene Little Cottonwood stock, both in Utah. Titanite textures observed with back-scattered electron (BSE) imaging along with their compositions were used to determine four periods of growth: cores, rims, interstitial overgrowths, and secondary replacements. Brightness in BSE images correlates mostly with rare earth elements (REE). REE patterns in cores and rims are compositionally similar in both plutons, although the Notch Peak intrusion tend to be slightly more enriched in REE. Overgrowths and secondary replacements typically have lower concentrations of REE and Fe and higher Al, Mn, F, and U. They also have similar δ18O values to primary titanite, indicating alteration and recrystallization from exolved magmatic fluids rather than meteoric sources. In the Notch Peak intrusion, titanite grains usually have simple, oscillatory zoned textures that include cores which include bright sector zones. These are overprinted by secondary titanite that grows within and replaces the primary titanite grain. At some localities, Notch Peak titanites have been hydrothermally altered to fine-grained aggregates of rutile or brookite, magnetite, quartz, and plagioclase. These observations indicate a simple cooling path after magmatic intrusion, followed by hydrothermal alteration for the Notch Peak intrusion. The Little Cottonwood stock contains titanite grains that are distinctly different from those in the Notch Peak intrusion. They typically contain a distinct patchy core with rounded, resorbed ilmenite inclusions. Surrounding the core is a mantle of oscillatory zoned titanite. On many grains, narrow rims of secondary overgrowths are observed as well as interstitial titanite growing in between chloritized biotite sheets. The cores of these titanite grains suggest that a more reduced, ilmenite-rich magma mixed into an oxidized felsic magma, destabilizing existing ilmenites and forming its patchy texture. This was followed by hydrothermal overgrowths and interstitial titanite, like Notch Peak, but to a lesser extent. Although both plutons had similar emplacement settings–subduction related intrusion into Paleozoic limestone–their whole rock and titanite chemistries are different. The Notch Peak intrusion is more chemically evolved and less mafic than the Little Cottonwood stock. The patchy cores with Fe-Ti oxide inclusions found in the Little Cottonwood stock, along with the abundance of mafic enclaves in the pluton, provide evidence for magma mixing, while no evidence is observed in the Notch Peak intrusion for magma mixing.
5

Chování feroelektrik v teplotní oblasti / The behaviour of ferroelectrics in the temperature range

Czanadi, Jindřich January 2012 (has links)
The submitted thesis describes characteristics and use of the ferroelectric material which has their utilization in electronics and electro technical industry. The thesis describes behaviour ferroelectrics in temperature range. A suitable workplace was designed and its functionality was verified in selected ferroelectrics samples dependence of temperature of components of complex permittivity.
6

Vlastnosti perspektivních feroelektrických materiálů / Properties of the perspective ferroelectric materials

Krejčí, Josef January 2012 (has links)
This thesis studies the properties and the applications of prospective ferroelectric materials which are used in electrical engineering and electronic industry. Further are physically explained and mathematically described the basic principles running in their structure. The practical part is aimed to build a workplace for measuring the components of the complex permittivity in the frequency and temperature area, controlled by the programmed measurement and service application using the Agilent VEE Pro 8.0 and MS Excel. The functionality of the workplace was verified on the selected material samples by measurement and evaluation of selected properties. For this issue was created electronic text, which can be used as a guide for laboratory exercises and it is an integral part of this work.
7

Příprava a vlastnosti feroelektrických keramických materiálů / Preparation and properties of ferroelectric ceramic materials

Vykoukalová, Tereza January 2012 (has links)
The aim of the work was a processing of ceramic material based on BST for ferroelectric application. Wet chemical techniques based on precipitations and sol-gel methods with ultrasound, hydrothermal or mechanochemical treatment supporting deaglomeration and reducing particle growth were used for BST ceramic powder synthesis. Suitable powders were selected by the evaluation of particle morphology, size and agglomeration, from these powders BST bulk ceramic with defined phase composition and morphology applicable for ferroelectric applications was prepared. It was found, that the most suitable method for preparation of phase pure and nanosized BST powder was sol-gel synthesis with solvothermal treatment (200 °C/48 h). Ceramic with relative density of 85 % TD and with the average grain size of about 1, 22 µm was prepared by pressing and sintering of the powder synthesized by the sol-gel method.
8

Reconnaissance U-Pb geochronology of Precambrian crystalline rocks from the northern Black Hills, South Dakota: Implications for regional thermotectonic history

Ghosh, Amiya Kumar 20 April 2009 (has links)
No description available.
9

Structure, stratigraphy, and U-Pb zircon-titanite geochronology of the Aley carbonatite complex, northeast British Columbia: Evidence for Antler-aged orogenesis in the Foreland Belt of the Canadian Cordillera

McLeish, Duncan Forbes 26 April 2013 (has links)
The tectonic significance and age of carbonatite intrusions in the western Foreland Belt of the Canadian Cordillera are poorly constrained. Recent 1:5,000 scale field mapping of one of these carbonatite intrusions, the Aley carbonatite (NTS 94 B/5), has demonstrated that it was emplaced as a syn-kinematic sill, coeval with a major nappe-forming tectonic event. Determining the age of the Aley carbonatite therefore provides a means of directly dating tectonism related to carbonatite magmatism. A U-Pb titanite age of 365.9 +/- 2.1 Ma was obtained from the Ospika pipe, an ultramafic diatreme spatially and genetically related to the carbonatite. We interpret the Late Devonian age of the Ospika pipe to be the minimum possible age of the carbonatite and syn-magmatic nappe-forming tectonic event. The maximum possible age of the carbonatite is constrained by the Early Devonian age of the Road River Group (ca. 410 Ma), the youngest strata intruded by carbonatite dykes and involved in the nappe forming event. Our dating results for the Aley carbonatite closely correlate with U-Pb zircon and perovskite ages obtained for the Ice River carbonatite complex in the western Foreland Belt of the southern Canadian Cordillera, and support the interpretation of carbonatite intrusions of the western Foreland Belt as genetically linked components of an alkaline-carbonatitic magmatic province. Structural, stratigraphic, and geochronological data from the Aley area indicate that deformation was similar in style to, and coeval with, structures attributable to the Antler Orogeny, and are consistent with the Antler orogen having extended the length of Cordilleran margin from the southern United States to Alaska. Deformed alkaline-carbonatite intrusions that characterize continental suture zones in Africa and Tibet may provide an analogue for the Aley carbonatite and correlative alkaline-carbonatite complexes in the western Foreland Belt. / Graduate / 0372 / mcleish@uvic.ca

Page generated in 0.0555 seconds