• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 110
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 738
  • 503
  • 429
  • 415
  • 157
  • 154
  • 154
  • 91
  • 91
  • 59
  • 59
  • 42
  • 37
  • 35
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

The effect of microwave radiation on mineral processing

Vorster, Werner January 2001 (has links)
Between 50% and 70% of the total energy used in the extraction process may be attributed to comminution. Microwave pre-treatment has been suggested as a means to decrease the energy requirements. A variety of mineral ores have been investigated and the effects of microwave radiation quantified in terms of the mineralogy, changes in the Bond Work Index, flotability and magnetic separation. It has been shown that microwave pre-treatment is most effective for coarse grained ores with consistent mineralogy consisting of good microwave absorbers in a transparent gangue (up to a 90% decrease in Bond work index for Palabora copper ore) whereas fine grained ores consisting predominantly of good absorbers are not affected as well (a reduction of only 25% in work index for Mambula ore). Although the mineralogy of minerals are affected by exposure to microwave radiation, flotability and magnetic separation characteristics have been shown not to be adversely affected, unless the microstructure is completely destroyed after prolonged microwave exposure. Computer simulations have shown that significant changes to comminution circuits are possible as a result of microwave induced work index reductions (three mills reduced to one). Purpose-built microwave units may hold the solution for more efficient mineral extraction in the near future.
282

Microstructure and texture characterisation of linear friction welding of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-6Mo

Guo, Yina January 2013 (has links)
Linear friction welding (LFW) of two α - β titanium alloys, Ti-6Al-4V (Ti64) and Ti-6Al-2Sn-4Zr-6Mo (Ti6246) was studied, focusing on micro-hardness measurement, microstructure and texture characterisation. It has been found that in the as-welded condition Ti6246 has lower micro-hardness values in the weld region than in the base material, while for Ti64 the weld region is harder. The change in hardness is greatly related to the microstructures formed after welding. In cnetre weld zone (CWZ), in the autogenous Ti6246 weld, the microstructure consists of fine β grains with needle shape orthorhombic α″. In the autogenous Ti64 weld, relatively large acicular martensitic α′ phase was found. A very strong texture component, where the basal pole is concentrated in the sample normal direction and one of the {11 20}α poles is concentrated in the oscillation direction, is identified in both the CWZ and thermo-mechanically affected zone. Comparison between the α texture and the β texture suggests that the strong texture component T is the consequence of the deformation β texture developed at high temperature and the preferred variant selection during the β→α transformation. The texture was found to have significant influence on the fracture toughness of the weld region.
283

Recovery of lithium from kaolin mining waste material

Iqbal, Zubera January 2015 (has links)
Lithium is considered a borderline strategically important metal for the UK due to the limited availability of primary deposits, of sufficient grade, for economic processing (Naden, 2012). The rising demand, of approximately 10% yearly, has promulgated investigations for the development of secondary sources of lithium in order to secure long term reserves for the UK and Europe (Jaskula, 2015). The British Geological Survey (1987) estimated that the St Austell granite contained up to 3.3 million tonnes of recoverable lithium. Imerys Ltd also identified lithium-bearing mineral in their kaolin waste material in Beauvoir, containing up to 0.89 wt.% Li2O. The lithium-bearing minerals identified were; lepidolite (K(Li,Al)3(Si,Al)4O10(F,OH)2) and zinnwaldite (KLiFeAl(AlSi3)O10(F,OH)2), which can contain between 3.0 to 7.7 wt.% Li2O and 2.0 to 5.0 wt.% Li2O, respectively (Garrett, 2004). Lithium flotation concentrates containing up to 5.0 wt.% Li2O were optimised for the Beauvoir waste material with up to 80% lithium recoveries, whereas a lower flotation grade of 0.5 wt.% Li2O was found for the St Austell material. The St Austell waste materials did not prove viable to process via conventional flotation routes hence a novel process route for the bio-recovery of lithium from lithium rich micas was developed. Extraction of lithium by bioleaching has demonstrated the ability of fungi, of Aspergillus niger group, to leach lithium from the lepidolite in significant quantity, achieving 125mg/L of lithium in solution after twelve weeks of bio-leaching, at a recovery of 45%. Following this research, Imerys are applying to build a pilot plant, securing funding through the Innovative UK grant.
284

Corrosion of titanium for biomedical applications

Yu, Fei January 2015 (has links)
Ti has been widely used in biomedical fields since the 1950s because of biocompatibility, corrosion resistance and suitable mechanical properties. However, corrosion-related failures of Ti implants are observed. Ti corrosion products are reported to induce unfavourable biological responses, which may lead to failures of Ti implants. Corrosion of three grades of Ti (CP-Ti Grade2, CP-Ti Grade4 and Ti6Al4V) in simulated peri-implant environments was investigated by solution analysis, surface analysis and electrochemical tests. Lipopolysaccharide, a component of bacterial cell walls and a mediator of peri-implant inflammation, was observed to enhance Ti corrosion in slightly acidic and neutral conditions (pH 4-7) whilst it inhibited Ti dissolution in highly acidic environments (pH 2). Both albumin, an abundant protein, and H₂O₂, an important inflammation product, influenced corrosion of Ti6Al4V and the co-existence of both species considerably enhanced Ti release than either species in isolation. The β phase of Ti6Al4V was preferentially attacked in H₂O₂. The presence of an early coloniser of dental implants Streptococcus sanguinis and human neutrophils, abundant immune cells, promoted Ti release. Mechanically-assisted crevice corrosion simulation was demonstrated with development of aggressive crevice chemistry. Albumin decreased the abrasion charge of Ti6Al4V while LPS and H2O2 did not show a measurable change.
285

Corrosion, transport, and deposition in pressurised water nuclear reactor primary coolant systems

Morrison, Jonathan J. January 2016 (has links)
Several unscheduled shut downs of the Cruas nuclear power plant in France have been caused by the deposition of corrosion products in flow broaches of the steam generator tube support sheets. The depositions are theorised to be the result of electrokinetically stimulated deposition. In this work, a hot water loop to replicate these depositions in the laboratory was built, along with rigs to characterise supporting phenomena – the corrosion rate of stainless steel and the solubility of the corrosion products. While the data obtained from the hot water loop did not provide conclusive proof of the existence or prevalence of the electrokinetically stimulated deposition mechanism, evidence of deposition caused by cavitation was found. The corrosion rate of stainless steel was measured at high temperatures in solutions of lithium hydroxide at various concentrations. Surface finish was found to have an effect on the corrosion rate, though the difference between mechanically ground surfaces with an order of magnitude difference in roughness was found to be minimal. The solubility of the corrosion products formed was measured and found to be of similar order to that reported in the literature, however the minor alloying elements were found to leach from the surface in substantial quantities.
286

Experimental optimization of the CAPRI process

Shah, Amjad January 2011 (has links)
An experimental study was carried out concerning the optimization of catalyst type, operating conditions, addition of water and hydrogen for use in the THAI-CAPRI process and is reported. Three feeds namely, THAI field oil, Combustion Cell Oil (CCO) and n-decane were used in the presence of catalyst or an inert medium for comparison. Experiments were carried out using micro-reactors containing 5 g catalyst under different temperatures, pressures and gas environments. It was found that there was a trade-off in operation temperature between upgrading performance and catalyst lifetime. At higher temperatures of 500 °C led to an average of 6.1 °API upgrading , however, the catalyst lifetime was limited to 1.5 hours. Operation at 420 °C was found to be a suitable compromise, with upgrading limited up to 3 °API, with catalyst lifetime extended to 77.5 hours. From the results of the current study it can be said that by careful control of the temperature and oil flow rate in the in-situ CAPRI process, additional upgrading compared with the THAI process alone may be effected, resulting in a more valuable produced oil, which is easier to transport and could be further processed into distillates.
287

Sustainable self-healing structural composites

Wang, Yongjing January 2017 (has links)
Self-healing composites are composite materials capable of automatic recovery when damaged. They are inspired by biological systems such as the human skin which are naturally able to heal themselves. Over the past two decades, two major self-healing concepts – based respectively on the use of capsules and vascular networks containing healing agents - have been proposed and material property recovery has been enhanced from 60% to nearly 100%. However, this improvement is still not sufficient to allow self-healing composites to be applied in practice because the healing capability varies with many external factors such as ambient temperatures and damage conditions. The key to the practical application of self-healing composites is to promote the sustainability of healing capacity to make the recovery robust. The thesis presents various techniques to enhance the healing capacity of fibre-reinforced composites to realise strong recovery regardless of ambient temperatures or material types. It presents the effects of various popular configurations of vascular networks on the flexural properties and healing performances of fibre-reinforced composites. The thesis demonstrates a design enabling recovery at ultra-low temperatures by using hollow vascular networks and porous heating elements. It also presents a new healing mechanism to repair the broken structural carbon fibres by incorporating conventional healing agents with short carbon fibres which could be aligned in an in situ electric field. The mechanism was also adopted to enable the restoration of the conductivity of a fibre-reinforced composite incorporating a porous conductive element, a carbon nanotube sheet, which could be used as a heating actuator or a sensing component. Thus, the development reported in this thesis have contributed to promoting the sustainability of the recovery of self-healing composites.
288

Studies on atmospheric corrosion processes in AA2024

du Plessis, Andrew January 2015 (has links)
Atmospheric corrosion of aluminium alloy AA2024 was investigated using in situ synchrotron micro-tomography, which allows visualisation in a non-destructive manner in real time. The effect of atmospheric variables such as salt type, humidity, exposure time and salt deposition density on the corrosion rate was investigated. It was found that corrosion fissures grow along grain boundaries parallel to the rolling direction of the alloy, reaching a limiting depth, and then spread laterally. The volume of corrosion increases with salt density and relative humidity. Salt type has a limited effect on the volume of corrosion in microtomography measurements where the droplet is constrained at the top of a pin, but in parallel lab-based experiments on plate surfaces, it was found that NaCl and simulated ocean water droplets spread laterally, leading to increased corrosion owing to an increase cathodic area, whereas pure MgCh and CaCh droplets do not spread. Preliminary microtomography work on cycling the relative humidity showed transient increases in localised corrosion during wetting and drying phases, often associated with rapid growth of pmt of a localised cmTosion site, or initiation of new sites.
289

Advanced micro and nano fabrications for engineering applications

Jiang, Kyle January 2016 (has links)
This document is a compilation of my selected research publications in micro and nano fabrications. The papers are largely arranged in chronological order to show the development of research interests. The research works are grouped into three sections. Section one consists of 34 research papers on micro fabrication in various materials. The research was motivated by the development of a finger nail sized micro engine as explained in Papers 1 and 2. Section two of the document includes some research activities and achievements on nanocomposite materials embedded in metallic and ceramic matrices. Section 3 includes the papers to reflect the research in developing nanostructure fabrication processes. The research contained in this DSc submission shows a continuous exploration and development of novel micro/nano fabrication processes. Although the submission covers research activities spanning 15 years, from 2000 to 2015, many of the research results represent the top technology of the time. They have contributed to the ever progressing manufacturing capability of the world. The research has encompassed both theoretical and experimental studies, contributing to the understanding of the processes and materials involved.
290

Gold-containing bimetallicnanoparticles

Tran, Dung Trung January 2011 (has links)
This thesis describes computational studies, syntheses and characterization of Cu-Au, Pd-Au, and Pt-Au bimetallic nanoparticles. The computational methodology is a combination of a genetic algorithm coupled with an empirical potential and density functional theory, which is used to study theoretically the geometrical structure, chemical configuration, and electronic properties of 38 atom Cu-Au and 40-atom Pt-Au nanoparticles. Experimental Cu Au and Pt-Au nanoparticles are synthesized by wet-chemical methods: the two-phase method combined with a galvanic exchange procedure (dodecanethiol-stabilized Cu-Au nanoparticles), the polyol method (Polyvinylpyrrolidone stabilized Pt-Au nanoparticles), and the Turkevich-Frens method combined with a successive reduction procedure (citrate-stabilized Pt-Au nanoparticles). The Pd-Au nanoparticles which are characterized in our work were synthesized by a microbial method. The nanoparticles are characterized using transmission electron microscopy (TEM) and scanning TEM (STEM) combined with high angle annular dark field (HAADF) imaging, energy dispersive X-ray elemental mapping using a silicon drift detector (SDD), tomography, and electron energy loss spectroscopy (EELS). Sizes and shapes of the Cu-Au, Pd-Au, and Pt-Au nanoparticles are studied by TEM. Morphological evolution and aggregation of the Cu-Au nanoparticles are also observed under the TEM electron beam. SDD-EDX elemental mapping combined with HAADF contrast is used to study the chemical configuration of all the three systems. HAADF-STEM tomography is performed for the Pd-Au nanoparticles. Surface plasmon resonances of the Cu-Au and Pd-Au nanoparticles are studied using EELS. The structures and configurations of the theoretical bimetallic clusters and the experimental bimetallic nanoparticles are found to be composition-dependent.

Page generated in 0.0483 seconds