Spelling suggestions: "subject:"tohoto""
11 |
Measuring liquefaction-induced deformation from optical satellite imageryMartin, Jonathan Grant 11 September 2014 (has links)
Liquefaction-induced deformations associated with lateral spreading represent a significant hazard that can cause substantial damage during earthquakes. The ability to accurately predict lateral-spreading displacement is hampered by a lack of field data from previous earthquakes. Remote sensing via optical image correlation can fill this gap and provide data regarding liquefaction-induced lateral spreading displacements. In this thesis, deformations from three earthquakes (2010 Darfield, February 2011 Christchurch, and 2011 Tohoku Earthquakes) are measured using optical image correlation applied to 0.5-m resolution satellite imagery. The resulting deformations from optical image correlation are compared to the geologic conditions, as well as field observations and measurements of liquefaction. Measurements from optical image correlation are found to have a precision within 0.40 m in all three cases, and results agree well with field measurements. / text
|
12 |
Study on rupture processes of large interplate earthquakes estimated by fully Bayesian source inversions using multi period-band strong-motion data -The 2011 Tohoku-oki and the 2011 Ibaraki-oki earthquakes- / 周期帯別の強震波形を用いたフルベイジアン震源インバージョンから推定される巨大プレート境界型地震の破壊過程に関する研究-2011年東北地方太平洋沖地震及び2011年茨城県沖地震を例にして-Kubo, Hisahiko 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18801号 / 理博第4059号 / 新制||理||1584(附属図書館) / 31752 / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 岩田 知孝, 教授 平原 和朗, 准教授 久家 慶子 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
13 |
Crustal deformation associated with great subduction earthquakesSun, Tianhaozhe 28 July 2017 (has links)
The slip behaviour of subduction faults and the viscoelastic rheology of Earth’s mantle govern crustal deformation throughout the subduction earthquake cycle. This Ph.D. dissertation presents research results on two topics: (1) coseismic and postseismic slip of the shallowest segment of subduction faults and (2) postseismic deformation following great subduction earthquakes controlled by mantle viscoelasticity.
Topic 1: Slip behaviour of the shallowest subduction faults. By modelling high-resolution cross-trench bathymetry surveys before and after the 2011 Mw 9.0 Tohoku-oki earthquake, we determine the magnitude and distribution of coseismic slip over the most near-trench 40 km of the Japan Trench megathrust. The inferred > 60 m average slip and a gentle increase by 5 m towards the trench over this distance indicate moderate degree of net coseismic weakening of the shallow fault. Using near-trench seafloor and sub-seafloor fluid pressure variations as strain indicators in conjunction with land-based geodetic measurements, we determine coseismic-slip and afterslip distributions of the 2012 Mw 7.6 Costa Rica earthquake. Here, trench-breaching slip similar to the Tohoku-oki rupture did not occur during the earthquake, but afterslip extended to the trench axis and reached ~0.7 m over 1.3 years after the earthquake, exhibiting a velocity-strengthening behaviour. These two contrasting examples bracket a possibly wide range of slip behaviour of the shallow megathrust. They help us understand why large tsunamis are generated by some but not all subduction earthquakes.
Topic 2: Postseismic deformation following great subduction earthquakes. Due to the asymmetry of megathrust rupture, with the upper plate undergoing greater coseismic tension than the incoming plate, viscoelastic stress relaxation causes the trench and land areas to move in opposite, opposing directions immediately after the earthquake. Seafloor geodetic measurements following the 2011 Tohoku-oki earthquake, modelled in this work, provided the first direct observational evidence for this effect. Systematic modelling studies in this work suggest that such viscoelastic opposing motion should be common to all Mw ≥ 8 subduction earthquakes. As the effect of viscoelastic relaxation decays with time and the effect of fault relocking becomes increasingly dominant, the dividing boundary of the opposing motion continues to migrate away from the rupture area. Comparative studies of ten 8 ≤ Mw ≤ 9.5 subduction earthquakes in this dissertation quantifies the primary role of earthquake size in controlling the “speed” of the evolution of this deformation. Larger earthquakes are followed by longer-lived opposing motion that affects a broader region of the upper plate. / Graduate
|
14 |
Experimental and numerical studies of masonry wall panels and timber frames of low-rise structures under seismic loadings in IndonesiaSusila, Gede Adi January 2014 (has links)
Indonesia is a developing country that suffers from earthquakes and windstorms and where at least 60% of houses are non-engineered structures, built by unskilled workers using masonry and timber. The non-engineered housing units developed in urban region are also vulnerable to seismic hazard due to the use of low quality of material and constructions method. Those structures are not resistant to extreme lateral loads or ground movement and their failure during an earthquake or storm can lead to significant loss of life. This thesis is concerned with the structural performance of Indonesian low-rise buildings made of masonry and timber under lateral seismic load. The research presented includes a survey of forms of building structure and experimental, analytical and numerical work to predict the behaviour of masonry wall and traditional timber frame buildings. Experimental testing of both masonry and timber have been carried out in Indonesia to establish the quality of materials and to provide material properties for numerical simulations. The experimental study found that the strength of Indonesia-Bali clay brick masonry are below the minimum standard required for masonry structures built in seismic regions, being at least 50% lower than the requirement specified in British Standard and Eurocode-6 (BS EN 1996-1-1:2005). In contrast, Indonesian timber materials meet the strength classes specified in British Standard/Eurocode- 5 (BS EN 338:2009) in the range of strength grade D35-40 and C35).Structural tests under monotonic and cyclic loading have been conducted on building components in Indonesia, to determine the load-displacement capacity of local hand-made masonry wall panels and timber frames in order to: (1) evaluate the performance of masonry and timber frame structure, (2) investigate the dynamic behaviour of both structures, (3) observe the effect of in-plane stiffness and ductility level, and (4) examine the anchoring joint at the base of timber frame that resists the overturning moment. From these tests, the structural ductility was found to be less than two which is below the requirement of the relevant guidelines from the Federal Emergency Management Agency, USA (FEMA-306). It was also observed that the lateral stiffness of masonry wall is much higher than the equivalent timber frame of the same height and length. The experimental value of stiffness of the masonry wall panel was found to be one-twelfth of the recommended values given in FEMA-356 and the Canadian Building code. The masonry wall provides relatively low displacement compared to the large displacement of the timber frame at the full capacity level of lateral load, with structural framing members of the latter remaining intact. The weak point of the timber frame is the mechanical joint and the capacity of slip joint governs the lateral load capacity of the whole frame. Detailed numerical models of the experimental specimens were setup in Abaqus using three-dimensional solid elements. Cohesive elements were used to simulate the mortar behaviour, exhibiting cracking and the associated physical separation of the elements. Appropriate contact definitions were used where relevant, especially for the timber frame joints. A range of available material plasticity models were reviewed: Drucker-Prager, Crystalline Plasticity, and Cohesive Damage model. It was found that the combination of Crystalline Plasticity model for the brick unit and timber, and the Cohesive Damage model for the mortar is capable of simulating the experimental load-displacement behaviour fairly accurately. The validated numerical models have been used to (1) predict the lateral load capacity, (2) determine the cracking load and patterns, (3) carry out a detailed parametric study by changing the geometric and material properties different to the experimental specimens. The numerical models were used to assess different strengthening measures such as using bamboo as reinforcement in the masonry walls for a complete single storey, and a two-storey houses including openings for doors and windows. The traditional footing of the timber structures was analysed using Abaqus and was found to be an excellent base isolation system which partly explains the survival of those structures in the past earthquakes. The experimental and numerical results have finally been used to develop a design guideline for new construction as well as recommendations for retrofitting of existing structures for improved performance under seismic lateral load.
|
Page generated in 0.0332 seconds