• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 15
  • 14
  • 9
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of a rock classification system for use with diamond tools

Wright, D. N. January 1997 (has links)
No description available.
2

Different coatings effect on tool-life when milling hardened tool steels

Jonsson, Jonathan January 2015 (has links)
Abstract This thesis work is about finding out which coating should be used for which hardened tool steel and this was done by testing different coated cutting tools in different kinds of tool steels. The thesis work is performed at Uddeholms AB together with Uddeholms AB in the department of R&D at machinability cooperating with eifeler-Vacotec GmbH. The thesis work is going on from the end of January to the start of June and is a part of the education as mechanical engineer at Karlstad University and includes a total of 22,5 hp. The objective after finished thesis work is to be able to leave a recommendation to Uddeholms AB which coating is most suitable for each tool steel. To be able to leave that recommendation cutting tests are performed in four different hardened steel grades from Uddeholms AB combined with seven different coatings from eifeler-Vacotec GmbH. Steel grades tested are NIMAX®, DIEVAR®, VANADIS® 10 and ORVAR® SUPREME and coatings tested are CROSAL®, EXXTRAL® and SISTRAL® in different compounds. ORVAR® SUPREME gave such a long cutting tool-life that it was left for further investigation due to time limits that the thesis work had. In the other three tool steels it was possible to get a recommendation out of the four coatings tested in each tool steel. The coating that is recommended for each tool steel is only based on the cutting tool lasting the longest in each tool steel. That is not how a recommendation usually is formed, however for this thesis work there is no time for checking all the aspects that is vital for a proper recommendation. In order to get a proper recommendation, further more aspects that are checked are for example: Different cutting parameters (cutting speed, feed, etc.) Different geometries on the cutting tool Smoothness of the cutting tool and the coating In table 1 there is a compilation of which coating that was recommended for which tool steel. Table 1. This is a compilation of which coating that was recommended for which tool steel. NIMAX®               CROSAL® V1 DIEVAR®             SISTRAL® Ultrafine VANADIS® 10    SISTRAL® S
3

ANALYSIS OF DIFFERENT TI5553 ALLOY CUTTING STRATEGIES FOR THE IMPROVEMENT OF TOOL LIFE

Kock Filho, Tarcisio January 2021 (has links)
Titanium alloys support a wide range of practical applications due to their excellent mechanical properties. These include high strength-to-weight ratio, high mechanical strength at elevated temperatures and remarkable oxidation resistance. Machinability investigations so far have been intentionally focused on Ti-6Al-4V, which is commonly used in the aerospace research and development. However, a new classes of titanium alloys are also being developed for these applications. Ti-5Al-5Mo-5V-3C, also known as Ti5553, is included in this new category of titanium grade alloys. It corresponds to a near beta titanium alloy and generally it is employed on the production of high strength parts. Its high tensile strength combined with low weight (compared to Ti64) makes Ti5553 a suitable choice for landing gear parts and advanced structural components. However, due to the previously mentioned mechanical properties of Ti5553, machining processes can be difficult. During the cutting tests, the cutting zone experiences high cutting temperatures, and combined with a low rate of heat transfer, it generates stress and premature tool failure. By using several distinct experimental approaches, this work presents a comparison between different machining conditions (combinations of tools and coolants) to diagnose wear processes and identify better cutting parameters. The main objective of this research is to establish an understanding of how these parameters affect tribological aspects when machining Ti5553. The results of machining studies demonstrate different wear behaviour for CBN and PCD tools under various cutting environments (different coolant modes). These operating conditions can considerably affect the cutting forces leading to an increased tool life and improved surface integrity by decreasing, the residual stress and roughness, as well as work of hardening the workpiece during machining operations. / Thesis / Master of Applied Science (MASc)
4

Cutting Tool Edge Design for Longer Tool Life

Banciu, Diana 08 1900 (has links)
In metal cutting, the effects of edge preparation and tool wear are considered most critical, as they directly determine tool life, surface finish and properties of the subsurface layer. Proper selection and application of cutting tool edge preparation is one of the basic factors for a successfully manufactured and correctly performing cutting tool. In this regard, the use of cutting tools with honed and chamfered edges is ever increasing. This thesis develops a procedure to design a subtle feature on the cutting edge of an insert, which mimics as closely as possible the natural wear that occurs in the initial stage of wear and arrive at a geometry that is known to lead to stable wear. In this case the geometry that would naturally occur is established with minimal subsurface damage, thus leading to a longer tool life. Turning test data collected showed that using a 50(mu)m chamfer on the rake face of the insert could minimize tool flank wear. By applying a special coating on this newly created geometry, a significant increase in the stable stage of wear and an overall improvement in performance and productivity have been observed. The analysis of chip morphology showed an improved behavior in the case of chamfered coated inserts. / Thesis / Master of Applied Science (MASc)
5

Adaptive tool selection strategies for drilling in flexible manufacturing systems

Chander, Karthik Balachandran 30 September 2004 (has links)
The thesis presents an approach to adaptive decision making strategies to reduce bottlenecks in a drilling operation and to extend tool life. It is an attempt to portray the real drilling system in a typical Flexible Manufacturing System (FMS) layout. The system designed serves as back end intelligence to drilling machines (INTELLIDRILL) in a Flexible Manufacturing System for making dynamic and real time decisions. INTELLIDRILL uses mathematical and adaptive tool reliability models to simulate the machining conditions and tool availability for an operation based on history of tool failures. The results are used to compute the machining parameters and the tools required for an operation. INTELLIDRILL can devise strategies for different tool materials to operate on batches of different materials. INTELLIDRILL decisions could lead to significant savings in tooling costs and reduction in flow line bottlenecks.
6

Predictive Modeling of Near Dry Machining: Mechanical Performance and Environmental Impact

Li, Kuan-Ming 22 June 2006 (has links)
The objective of this study is to develop a methodology to analyze the air quality and tool performance in turning process under near-dry condition. Near dry machining refers to the use of a very small amount of cutting fluid in the machining process. In order to implement the near dry machining technology, this dissertation develops the analytical models for both tool life and aerosol generation prediction. This research includes predictive models of cutting temperatures, cutting forces, tool wear progressions, and aerosol generation. The comparison of air quality and tool performance among dry machining process, near dry machining process, and flood cooling machining process is also presented. It is found that according to the selected cutting conditions in the model-based comparisons, the predicted cutting forces, cutting temperature and power consumption under near dry lubrication are reduced as high as about 30% compared with those in dry cutting but these predicted values are higher than those in wet cutting by about 10% under the same cutting conditions while the predicted tool wear land lengths are reduced by 60% compared with those in dry cutting but these values are higher than those in wet cutting about 1% under the same cutting conditions. However, the air quality for near dry machining with 12.5 ml/hr oil flow rate is worse than that for wet cutting due to different aerosol generation mechanisms.
7

Adaptive tool selection strategies for drilling in flexible manufacturing systems

Chander, Karthik Balachandran 30 September 2004 (has links)
The thesis presents an approach to adaptive decision making strategies to reduce bottlenecks in a drilling operation and to extend tool life. It is an attempt to portray the real drilling system in a typical Flexible Manufacturing System (FMS) layout. The system designed serves as back end intelligence to drilling machines (INTELLIDRILL) in a Flexible Manufacturing System for making dynamic and real time decisions. INTELLIDRILL uses mathematical and adaptive tool reliability models to simulate the machining conditions and tool availability for an operation based on history of tool failures. The results are used to compute the machining parameters and the tools required for an operation. INTELLIDRILL can devise strategies for different tool materials to operate on batches of different materials. INTELLIDRILL decisions could lead to significant savings in tooling costs and reduction in flow line bottlenecks.
8

OPTIMIZATION OF CUTTING CONDITIONS FOR SUSTAINABLE MACHINING OF SINTERED POWDER METAL STEELS USING PCBN AND CARBIDE TOOLS

Joshi, Kunal J. 01 January 2006 (has links)
Powder metals are becoming a popular choice in the automotive and other manufacturing industries because of their ability to meet wide ranging product functional requirements without compromising the performance of the product. They offer various advantages, including weight reduction, near net-shape processing capability, and their ability to be sintered to achieve desired properties in the end-product. However, in order to satisfy the product design requirements during manufacturing, they need to be machined to the required tolerances. Machining of powder metals is quite different to machining of traditional metals because of their specific properties, including porosity. This thesis work deals with the finish machining of powder metal steels in automotive applications, for increased tool-life/reduced tool-wear. Tool-life is affected by a variety of factors such as tool grade selection, tool coating, cutting conditions and tool geometry including cutting edge geometry. This work involves optimization of cutting conditions for plunge cutting and boring operations of automotive powder metal components using PCBN and carbide tools. The cycle time of the process introduces an additional constraint for the optimization model along with the tool-wear criterion. Optimized cutting conditions are achieved for maximum tool-life.
9

Testování řezivosti vybraných druhů PVD povlaků pro frézování. / Testing of cutting performance of new PVD coatings for milling.

Skrbek, Jan January 2010 (has links)
This work is focused to the cutting tests. There is a description of cutting test designed for PVD coated cemented carbide end mills. Cutting conditions are chosen according to orders, other subjects of choice are cutting tool geometry and workpiece material.
10

The impact of tool performance on micromachining capability

Zdebski, Daniel January 2012 (has links)
Micro-milling represents a versatile and fast manufacturing process suitable for production of fully 3D micro-components. Such components are demanded for a vast number of industrial applications including safety systems, environmental sensors, personalized medical devices or micro-lenses and mirrors. The ability of micro-milling to process a wide range of materials makes it one of the best candidates to take a leading position in micromanufacturing. However, so far it does not seem to happen. By discussion with various industrialists, low predictability of micro-milling process was identified as the major limiting factor. This is mainly because of strong effects of the tool tolerances and process uncertainties on machining performance. Although, these issues are well known, they are not reflected by the current modelling methods used in micro-milling. Therefore, the research presented in this thesis mainly concentrates on development of a method allowing a prediction of the tool life in manner of tool breakage probability. Another important criterion which must be fulfilled is the method applicability to industrial applications. This means that the method must give sufficiently accurate prediction in reasonable time with minimum effort and interactions with day-to-day manufacturing process. The criteria listed above led to development of a new method based on analytically/numerical modelling techniques combined with an analysis of real tool variations and process uncertainty. Although, the method is presented in a relatively basic form, without considering some of the important factors, it shows high potential for industrial applications. Possibility of further implementation of additional factors is also discussed in this thesis. Additionally, some of the modelling techniques presented in this thesis are assumed to be suitable for application during designing of micro end-mills. Therefore, in the last part of this thesis is presented a systematic methodology for designing of micro end-mills. This method is based on knowledge and experience gained during this research.

Page generated in 0.0704 seconds