• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 12
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Additive manufacturing : Optimization of process parameters for fused filament fabrication

Hayagrivan, Vishal January 2018 (has links)
An obstacle to the wide spread use of additive manufacturing (AM) is the difficulty in estimating the effects of process parameters on the mechanical properties of the manufactured part. The complex relationship between the geometry, parameters and mechanical properties makes it impractical to derive an analytical relationship and calls for the use of a numerical model. An approach to formulate a numerical model in developed in this thesis. The AM technique focused in this thesis is fused filament fabrication (FFF). A numerical model is developed by recreating FFF build process in a simulation environment. Machine instructions generated by a slicer to build a part is used to create a numerical model. The model acts as a basis to determine the effects of process parameters on the stiffness and the strength of a part. Determining the stiffness of the part is done by calculating the response of the model to a uniformly distributed load. The strength of the part depends on it's thermal history. The developed numerical model serves as a basis to implement models describing the relation between thermal history and strength. The developed model is suited to optimize FFF parameters as it encompass effects of all FFF parameters. A genetic algorithm is used to optimize the FFF parameters for minimum weight with a minimum stiffness constraint. / Ett hinder för att additiv tillverkning (AT), eller ”3D-printing”, ska få ett bredare genomslag är svårigheten att uppskatta effekterna av processparametrar på den tillverkade produktens mekaniska prestanda. Det komplexa förhållandet mellan geometri och processparametrar gör det opraktiskt och komplicerat att härleda analytiska uttryck för att förutsäga de mekaniska egenskaperna. Alternativet är att istället använda numeriska modeller. Huvudsyftet med denna avhandling har därför varit att utveckla en numerisk modell som kan användas för att förutsäga de mekaniska egenskaperna för detaljer tillverkade genom AT. AT-tekniken som avses är inriktad på Fused Filament Fabrication (FFF). En numerisk modell har utvecklats genom att återskapa FFF-byggprocessen i en simuleringsmiljö. Instruktioner (skriven i GCode) som används för att bygga en detalj genom FFF har här översatts till en numerisk FE-modell. Modellen används sen för att bestämma effekterna av processparametrar på styvheten och styrkan hos den tillverkade detaljen. I detta arbete har strukturstyvheten hos olika detaljer beräknats genom att utvärdera modellens svar för jämnt fördelade belastningsfall. Styrkan, vilket är starkt beroende på den tillverkade detaljens termiska historia, har inte utvärderats. Den utvecklade numeriska modellen kan dock fungera som underlag för implementering av modeller som beskriver relationen mellan termisk historia och styrka. Den utvecklade modellen är anpassad för optimering av FFF-parametrar då den omfattar effekterna av alla FFF-parametrar. En genetisk algoritm har använts i detta arbete för att optimera parametrarna med avseende på vikt för en given strukturstyvhet.
22

Simulation and Optimization of CNC controlled grinding processes : Analysis and simulation of automated robot finshing process

Chandran, Sarath, Abraham Mathews, Jithin January 2016 (has links)
Products with complicated shapes require superior surface finish to perform the intended function. Despite significant developments in technology, finishing operations are still performed semi automatically/manually, relying on the skills of the machinist. The pressure to produce products at the best quality in the shortest lead time has made it highly inconvenient to depend on traditional methods. Thus, there is a rising need for automation which has become a resource to remain competitive in the manufacturing industry. Diminishing return of trading quality over time in finishing operations signifies the importance of having a pre-determined trajectory (tool path) that produces an optimum surface in the least possible machining time. Tool path optimization for finishing process considering tool kinematics is of relatively low importance in the present scenario. The available automation in grinding processes encompass around the dynamics of machining. In this paper we provide an overview of optimizing the tool path using evolutionary algorithms, considering the significance of process dynamics and kinematics. Process efficiency of the generated tool movements are studied based on the evaluation of relative importance of the finishing parameters. Surface quality is analysed using MATLAB and optimization is performed on account of peak to valley height. Surface removal characteristics are analysed based on process variables that have the most likely impact on surface finish. The research results indicated that tool path is the most significant parameter determining the surface quality of a finishing operation. The inter-dependency of parameters were also studied using Taguchi design of experiments. Possible combinations of various tool paths and tool influencing parameters are presented to realize a surface that exhibits lowest errors. / European Horizon 2020 Project SYMPLEXITY

Page generated in 0.0632 seconds