51 |
Iterative solution of equations in linear topological spaces.Kotze, Wessel Johannes. January 1964 (has links)
In this treatise the convergence of iterative algorithms for the solution of non-linear operator equations in complex linear topological spaces are studied from the point of view of fixed-point theorems in such spaces... It was felt that the concept of the Gâteaux differential is a more natural one to use in connection with linear topological spaces. The beauty of the developed technique we mentioned earlier is essentially due to the fact that we are considering spaces over the complex number field. The resulting convergence theorems have also the added advantage of imposing no conditions on the second or higher order differentials of the operator T, as would be the case in an obvious extension ( which was not written down) of Kantorovich's work to such real linear topological spaces. [...]
|
52 |
Homoclinic tangencies and families of interval maps with non-constant topological entropyPederson, Steven M. 05 1900 (has links)
No description available.
|
53 |
Compactifications and function spacesMendivil, Franklin 12 1900 (has links)
No description available.
|
54 |
Pairings of Binary reflexive relational structures.Chishwashwa, Nyumbu. January 2008 (has links)
<p>The main purpose of this thesis is to study the interplay between relational structures and topology , and to portray pairings in terms of some finite poset models and order preserving maps. We show the interrelations between the categories of topological spaces, closure spaces and relational structures. We study the 4-point non-Hausdorff model S4 weakly homotopy equivalent to the circle S1. We study pairings of some objects in the category of relational structures similar to the multiplication S4 x S4- S4 S4 fails to be order preserving for posets. Nevertheless, applying a single barycentric subdivision on S4 to get S8, an 8-point model of the circle enables us to define an order preserving poset map S8 x S8- S4. Restricted to the axes, this map yields weak homotopy equivalences S8 x S8, we obtain a version of the Hopf map S8 x S8s - SS4. This model of the Hopf map is in fact a map of non-Hausdorff double map cylinders.</p>
|
55 |
Non-Archimedian norms and boundsByers, Victor. January 1967 (has links)
No description available.
|
56 |
A classification of the morphisms between two topological groupoids and the determination of the relationships existing among these morphisms / The morphisms between two topological groupoids.Zielinski, Gary Michael January 1979 (has links)
The investigation of this paper is introduced by describing an important collection of morphisms between two topological groupoids. Characterizations of the different types of morphisms of this collection will be formulated in order to facilitate the construction and the classication of the various morphisms considered. In addition, the relationships existing among the various members of this collection will be determined.
|
57 |
Solitons in low-dimensional sigma modelsGladikowski, Jens January 1997 (has links)
The aim of this thesis is to study topological soliton solutions in classical field theories, called sigma models, on a three-dimensional space. In chapter 1 we review the general field-theoretical framework of classical soliton solutions and exemplify it on the main features of the 0(3) σ-model and the Abehan Higgs model in (2+1) dimensions. In chapter 2 a U(l)-gauged 0(3) σ-model is discussed, where the behaviour of the gauge field is determined by a Chern-Simons term in the action. We find numerical solutions for radially symmetric fields and discuss those of degree one and two. They carry a non-vanishing angular momentum and can be interpreted as classical anyons. A similar model is studied in chapter 3. Here the potential is of Higgs-type and chosen to produce a Bogomol'nyi model where the energy is bounded from below by a linear combination of the topological degree of the matter fields and the local U(l)-charge. Depending on internal parameters, the solutions are solitons or vortices. We study them numerically and prove for a certain range of the matter field's vacuum value that there cannot be a 1-soliton.In chapter 4 we discuss a modified 0(3) σ-model in (3+0) dimensions. The topological stability of the solitons is here imphed by the degree of the map S(^3) → S(^2), which provides a lower boundon the potential energy of the configuration. Numerical solutions are obtained for configurations of azimuthal symmetry and the spectrum of slowly rotating solitons is approximated. Chapter 5 deals with a theory where the fields are maps IR(^2+1) → CP(^2). The Lagrangian includes a potential and a fourth-order term in the field-gradient. We find a family of static analytic solutions of degree one and study the 2-soIiton configuration numerically by using a gradient-flow equation on the moduli space of solutions. We conclude this thesis with a brief summary and give an outlook to open questions.
|
58 |
Topological Methods in Galois TheoryBurda, Yuri 10 December 2012 (has links)
This thesis is devoted to application of topological ideas to Galois theory. In the
fi rst part we obtain a characterization of branching data that guarantee that a regular
mapping from a Riemann surface to the Riemann sphere having this branching data is
invertible in radicals. The mappings having such branching data are then studied with
emphasis on those exceptional properties of these mappings that single them out among
all mappings from a Riemann surface to the Riemann sphere. These results provide a
framework for understanding an earlier work of Ritt on rational functions invertible in
radicals. In the second part of the thesis we apply topological methods to prove lower
bounds in Klein's resolvent problem, i.e. the problem of determining whether a given
algebraic function of n variables is a branch of a composition of rational functions and
an algebraic function of k variables. The main topological result here is that the smallest dimension of the base-space of a covering from which a given covering over a torus can be induced is equal to the minimal number of generators of the monodromy group of the covering over the torus. This result is then applied for instance to prove the bounds k is at least n/2 in Klein's resolvent problem for the universal algebraic function of degree n and
the answer k = n for generic algebraic function of n variables of degree at least 2n.
|
59 |
Locally stable maps of the 3-sphere into 4-space /Andersson, Ole, January 2005 (has links) (PDF)
Licentiatavhandling Uppsala, Univ : 2005.
|
60 |
Concerning a problem of K. KuratowskiNguyen, Van-Trinh, Heath, Jo W. January 2006 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references (p.22).
|
Page generated in 0.0532 seconds