1 |
Pattern-forming in non-equilibrium quantum systems and geometrical models of matterFranchetti, Guido January 2014 (has links)
This thesis is divided in two parts. The first one is devoted to the dynamics of polariton condensates, with particular attention to their pattern-forming capabilities. In many configurations of physical interest, the dynamics of polariton condensates can be modelled by means of a non-linear PDE which is strictly related to the Gross-Pitaevskii and the complex Ginzburg-Landau equations. Numerical simulations of this equation are used to investigate the robustness of the rotating vortex lattice which is predicted to spontaneously form in a non-equilibrium trapped condensate. An idea for a polariton-based gyroscope is then presented. The device relies on peculiar properties of non-equilibrium condensates - the possibility of controlling the vortex emission mechanism and the use of pumping strength as a control parameter - and improves on existing proposals for superfluid-based gyroscopes. Finally, the important rôle played by quantum pressure in the recently observed transition from a phase-locked but freely flowing condensate to a spatially trapped one is discussed. The second part of this thesis presents work done in the context of the geometrical models of matter framework, which aims to describe particles in terms of 4-dimensional manifolds. Conserved quantum numbers of particles are encoded in the topology of the manifold, while dynamical quantities are to be described in terms of its geometry. Two infinite families of manifolds, namely ALF gravitational instantons of types A_k and D_k, are investigated as possible models for multi-particle systems. On the basis of their topological and geometrical properties it is concluded that A_k can model a system of k+1 electrons, and D_k a system of a proton and k-1 electrons. Energy functionals which successfully reproduce the Coulomb interaction energy, and in one case also the rest masses, of these particle systems are then constructed in terms of the area and Gaussian curvature of preferred representatives of middle dimension homology. Finally, an idea for constructing multi-particle models by gluing single-particle ones is discussed.
|
2 |
Désintégration de vortex métastables couplés à la gravitéDupuis, Éric 04 1900 (has links)
Une étude analytique et numérique de vortex métastables couplés gravitationnelle-
ment et formés dans un modèle abélien de Higgs modifié est menée. Les concepts de
désintégration du faux vide et de solitons topologiques sont revus. Le modèle à l’étude
est comparé à d’autres modèles dans lesquels sont aussi formés des vortex. Les solutions
classiques correspondant au vortex sont trouvées numériquement. Leur sensibilité au
couplage gravitationnel est mise en évidence. Les zones de stabilité dans l’espace des
paramètres sont également définies. Un profil dit thin-wall du vortex survient dans la
limite d’un grand champ magnétique dans le coeur du vortex. La désintégration du vortex,
possible en raison du vrai vide à l’intérieur de celui-ci, est dans ce cas analysée analyti-
quement. Dans cette limite, l’exposant lié au taux de désintégration du vortex
vaut la moitié de celui associé à la désintégration du faux vide sans vortex. Ce résultat
tient peu importe la force du couplage gravitationnel. Ainsi, même une faible densité de
vortex pouvant induire la désintégration du faux vide accélère grandement le processus
de transition de phase et détermine le temps de vie du faux vide. Quelques commentaires
concernant la limite faible gravité de l’action en théorie des champs sont ajoutés pour
compléter l’étude. / Metastable vortices formed in a modified abelian Higgs model with gravity are studied
both analytically and numerically. Concepts of false vacuum decay and topological
solitons are reviewed. The model studied is compared to other models in which vortices
are also formed. Classical solutions corresponding to a vortex are found numerically. Their
sensitivity to gravitational coupling is highlighted. Zones of stability in parameter space
are shown. A so-called “thin-wall” limit of the vortex is obtained for high magnetic flux
whithin the vortex’s core. In that case, vortex disintegration, possible because of the true
vacuum present inside the vortex, can be studied analytically. In this limit, the exponent
associated to vortex tunneling decay rate is half the one associated with ordinary
false vacuum decay. This results holds regardless of the gravitational coupling strength.
Then, even a small density of vortices accelerates importantly the phase transition from
false to true vacuum and determine the false vacuum lifetime. Comments on weak gravity
limit of the action in field theory are made to complete this study.
|
3 |
Classically spinning and isospinning non-linear σ-model solitonsHaberichter, Mareike Katharina January 2014 (has links)
We investigate classically (iso)spinning topological soliton solutions in (2+1)- and (3+1)-dimensional models; more explicitly isospinning lump solutions in (2+1) dimensions, Skyrme solitons in (2+1) and (3+1) dimensions and Hopf soliton solutions in (3 +1) dimensions. For example, such soliton types can be used to describe quasiparticle excitations in ferromagnetic quantum Hall systems, can model spin and isospin states of nuclei and may be candidates to model glueball configurations in QCD.Unlike previous work, we do not impose any spatial symmetries on the isospinning soliton configurations and we explicitly allow the isospinning solitons to deform and break the symmetries of the static configurations. It turns out that soliton deformations clearly cannot be ignored. Depending on the topological model under investigation they can give rise to new types of instabilities, can result in new solution types which are unstable for vanishing isospin, can rearrange the spectrum of minimal energy solutions and can allow for transitions between different minimal-energy solutions in a given topological sector. Evidently, our numerical results on classically isospinning, arbitrarily deforming solitons are relevant for the quantization of classical soliton solutions.
|
4 |
Elasticity Theory and Topological Defects in Nematic Liquid CrystalsLong, Cheng 17 April 2023 (has links)
No description available.
|
Page generated in 0.0733 seconds