• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Periodic Domain Inversion of MgO-Doped Lithium Niobate By Corona Discharge Method

Markle, Jon January 2006 (has links)
<p>In this work a flow stabilized corona torch plasma was used for periodic domain inversion of MgO-doped lithium niobate with 19 .1 μm periodic gratings. The effective non-linear coefficient (derr) achieved through corona discharge poling was 17.5 pm/V, which agrees well with theoretical value of 16~19 pm/V. By analysing the second harmonic generation (SHG) tuning curves, the grating uniformity over the 10 mm grating was investigated. The 0.6 run bandwidth of the SHG tuning at full width half maximum (FWHM) corresponded exactly to the theoretical value. The agreement between experimental data and theoretical results imply that the obtained periodically poled lithium niobate (PPLN) has high quality. By controlling temperature in the range of 20 °C to 120 °C tunability of SHG wavelength was demonstrated between 782 run and 788 run.</p> <p>Discharge characteristics of the corona were studied using a floating potential double probe and optical emission spectroscopy. Using the double probe the distribution of ion density downstream of the corona torch was observed. The maximum ion density of 2 x 1018 (ions/cm3) was achieved 2 mm below the discharge electrode. Measurement of the optical emission spectrum was used to determine the vibrational ion temperature to be 3953 K. The observed spectrum consisted entirely of the second positive band of nitrogen.</p> <p>The applied voltage range of 9 kV to 10 kV was observed to be optimum for domain growth in periodic poling. Poling uniformity of the 12 mm grating was optimized for an electrode to crystal spacing of 13 mm. Increasing the crystal temperature during poling reduces the required coercive field for domain inversion. This reduces the required applied voltage and also reduces the required poling time by increasing the domain-switching rate. Proton exchange pretreatment of the (+z) crystal surface prior to poling has been demonstrated to control domain spreading, however future efforts are required to ensure a more reliable nucleation condition. Both high vacuum and spin coated photoresist function to increase electrical discrimination of anode grating and provide an improved nucleation condition for periodic poling of MgO-doped lithium niobate. Poling uniformity of the 12 mm grating was optimised for an electrode to crystal spacing of 13mm.</p> / Thesis / Master of Applied Science (MASc)
2

Redu??o aluminot?rmica do ?xido de t?ntalo usando uma tocha de plasma como ignitor

Santos, Antonio Carlos Pereira 23 March 2007 (has links)
Made available in DSpace on 2014-12-17T14:07:22Z (GMT). No. of bitstreams: 1 AntonioCPS.pdf: 2085220 bytes, checksum: 8e64ae2c2f5ffe8a64dd3420c9c87327 (MD5) Previous issue date: 2007-03-23 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / In this work was used a plasma torch of non transferred arc with argon as work gas, using a power supply with maximum DC current of 250 A and voltage of 30 V to activate the plasma and keep it switched on. The flame temperature was characterized by optical emission spectroscopy, through Boltzmann-plot-method. The torch has been used like igniter in the aluminothermic reduction of the mixture tantalum oxide and aluminum, seeking to obtain metallic tantalum. In heating of the reagents only one particle will be considered to study interactions between plasma-particle, seeking to determinate its fusion and residence time. The early powders were characterized by laser granulometry, scanning electron microscopy (SEM) and X-ray diffraction analysis. The final product of this reaction was characterized by SEM and X-ray diffraction. Crystallite size was calculated by the Scherrer equation and microdeformation was determined using Willamsom-Hall graph. With Rietveld method was possible to quantify the percentile in weight of the products obtained in the aluminothermic reaction. Semi-quantitative chemical analysis (EDS) confirmed the presence of metallic tantalum and Al2O3 as products of the reduction. As was waited the particle size of the metallic tantalum produced, presents values in nanometric scale due the short cooling time of those particles during the process / Neste trabalho foi utilizada uma tocha de plasma de arco n?o transferido com arg?nio como g?s de trabalho, utilizando uma fonte de pot?ncia com corrente m?xima de 250 A e tens?o m?xima de sa?da de 30 V fornecida pelo fabricante. A temperatura da tocha foi caracterizada atrav?s da espectroscopia de emiss?o ?ptica, utilizando a curva de Boltzmann. A tocha foi usada como ignitor para a rea??o de redu??o aluminot?rmica do ?xido de t?ntalo mais alum?nio para a produ??o de t?ntalo met?lico. No aquecimento dos reagentes apenas uma part?cula ser? considerada para o estudo da intera??o tocha-part?cula, com o objetivo de determinar seu tempo de fus?o e resid?ncia. Os p?s de partida foram caracterizados atrav?s da granulometria a laser, microscopa eletr?nica de varredura (MEV) e difra??o de raios X. O produto final desta rea??o foi caracterizado por MEV e difra??o de raios X. O tamanho de cristalito foi calculado atrav?s da equa??o de Scherrer e a microdeforma??o foi determinada utilizando o gr?fico de Willamsom-Hall. Com o m?todo de Rietveld foi poss?vel quantificar o percentual em peso do produto da rea??o aluminot?rmica. An?lise qu?mica semiquantitativa (EDS) confirmou a presen?a do Ta met?lico e Al2O3 como produtos da redu??o. Como era de se esperar, o tamanho das part?culas do t?ntalo met?lico produzida apresenta valores na faixa de nan?metro devido pequeno tempo de resfriamento durante o processo

Page generated in 0.0451 seconds