Spelling suggestions: "subject:"torsion""
11 |
Pryžový tlumič torzních kmitů čtyřválcového vznětového motoru / Rubber damper of a four-cylinder diesel engineBauza, Erik January 2010 (has links)
A content of this diploma thesis is construction design of torsional vibration rubber damper of four-stroke diesel supercharged engine. It` s realized evaluation of crankshaft from aspect of torsional vibrations and checked mechanical stress of crankshaft without using rubber damper. Consequently basic parameters of rubber damper are specified, then checked mechanical stress of crankshaft and designed own construction design of damper.
|
12 |
The influence of shear deformation on the behaviour of pultruded polymeric compositesAl-Ubaidi, Haitham January 1999 (has links)
Pultruded, fibre reinforced, polymeric composites are now being used in a wide range of structural engineering applications, due to their high strength to weight ratios and resistance to environmental conditions. However, such materials posses a relatively low shear modulus in relation to their axial and flexural moduli. This can result in shear deformation constituting a significant proportion of the total deformation and a reduction in buckling loads for various modes of instability. An experimental and theoretical study of the influence of shear deformation on the flexural and torsional stiffnesses and various modes of instability of pultruded polymeric bars of open cross-section is therefore presented. Theories for the bending and warping torsional response of pultruded, fibre reinforced polymeric bars of open cross-section, excluding and including the influence of shear deformation, are presented. Full section bending mechanical properties of several pultruded beams are determined using a static testing apparatus and a wide variety of span configurations. Full section warping torsional mechanical properties of several pultruded bars are determined using a new testing apparatus, capable of applying a torque to any cross-section along a bar, whilst maintaining the bars lateral position. Theories for the flexural, torsional and lateral instability of pultruded, fibre reinforced polymeric bars of open cross-section, excluding and including the influence of shear deformation, are developed and presented. Parametric studies of the influence of shear deformation in the flexural, torsional and lateral instability of various pultruded bars of open cross-section are also presented. The experimental and theoretical studies indicate that shear deformation reduces significantly the non-uniform bending stiffness of pultruded polymeric bars, but that its influence on the non-uniform and restrained warping torsional stiffness is practically negligible. Shear deformation has also been found to result in a significant reduction in flexural, torsional and coupled flexural-torsional or lateral buckling loads.
|
13 |
New development in experimental analysis of torsional vibration for rotating shaft systemsMiles, Toby J. January 1997 (has links)
No description available.
|
14 |
Torsional properties of spur gears in mesh using nonlinear finite element analysis.Sirichai, Seney January 1999 (has links)
This thesis investigates the characteristics of static torsional mesh stiffness, load sharing ratio, and transmission errors of gears in mesh with and without a localised tooth crack.Gearing is perhaps one of the most critical components in power transmission systems. The transmission error of gears in mesh is considered to be one of the main causes of gear noise and vibration. Numerous papers have been published on gear transmission error measurement and many investigations have been devoted to gear vibration analysis. There still, however, remains to be developed a general non-linear Finite Element Model capable of predicting the effect of variations of gear torsional mesh stiffness, transmission error, transmitted load and load sharing ratio. The primary purpose of this study was to develop such a model and to study the behaviour of the static torsional mesh stiffness, load sharing ratio, and transmission error over one completed cycle of the tooth mesh.The research outlined in this thesis considers the variations of the whole gear body stiffness arising from the gear body rotation due to tooth bending deflection, shearing displacement, and contact deformation. Many different positions within the meshing cycle were investigated and then compared with the results of a gear mesh having a single cracked tooth.In order to handle contact problems with the finite element method, the stiffness relationship between the two contact areas must be established. Existing Finite Element codes rely on the use of the variational approach to formulate contact problems. This can be achieved by insertion of a contact element placed in between the two contacting areas where contact occurs. For modelling of gear teeth in mesh, the penalty parameter of the contact element is user-defined and it varies through the cyclic mesh. A simple strategy of how to overcome these difficulties is ++ / also presented. Most of the previously published finite element analysis with gears has involved only partial teeth models.In an investigation of gear transmission errors using contact elements, the whole body of the gears in mesh must be modelled, because the penalty parameter of the contact elements must account for the flexibility of the entire body of the gear not just the local stiffness at the contact point.
|
15 |
Stability Analysis of Single and Double Steel Girders during ConstructionCoffelt, Sean Justin 01 December 2010 (has links)
Built-up steel I-girders are very commonly used in bridge construction. Their spans are typically very long, and they are susceptible to lateral torsional buckling if not enough lateral support is provided. This thesis includes guidelines for preventing lateral torsional buckling of steel I-girders under dead and wind load, accompanied with finite element analysis of double girder systems. The first portion includes capacity envelopes for single girders with single and double symmetric cross sections under various loading conditions and boundary conditions for double and single symmetric cross sections with double girders subjected to dead loads only. The second portion is dedicated to finite element analysis of double girders. Buckling analyses have been conducted on single symmetric double girders to verify their capacity equations and investigate the behavior of double girders subjected to wind load. The analyses focus on the weak axis bending of the double girder system as a whole and an evaluation of whether buckling of cross-bracing is an issue when lateral loads are present.
|
16 |
Stressed spline structuresAdriaenssens, Sigrid Maria Louis January 2000 (has links)
This thesis concerns stressed spline structures. A spline is defined as `an initially straight member with identical second moment of area about any axis perpendicular to its centroidal axis, bent into a spatial curve'. An analytical proof is presented to show that the spline's torsional stiffness is of no importance in its analysis (provided construction details do not introduce any torsional moment). This paramount proof allows the formulation of a spline analysis that relies solely on three translational degrees of freedom (3DOF) per node. Applying this 3DOF analysis to unstrained curves and battened or hoop supported membranes is approximate since the bending stiffness would correspond to one direction only. A series of four test cases validates the proposed 3DOF analysis. The analysis is first applied to a laterally loaded spline ring, where solution convergence and the effect of unequal length segment modelling are investigated. Most significantly, this test case demonstrates that the spline ring has a greater out-of-plane stiffness than a pre-bent ring. This feature lies at the basis of spline stressed membranes - the spline has superior out-of-plane stiffness under the action of forces applied by the membrane. The second and third test cases -- buckling of elastica and of a shallow sinusoidal arch -- clearly demonstrate that the 3DOF analysis is much faster, more accurate, and produces results closer to the analytical values compared with a 6DOF analysis. The fourth test case proves the efficiency of the 3DOF analysis through investigating buckling behaviour and loads of four circular arches under radial loading. As the torsional stiffness does not enter the 3DOF analysis, the stiffness of a spline constructed of spliced segments is identical to that of a continuous spline. In order to demonstrate their feasibility, five medium span (161n-32m) Glass Fibre Reinforced Plastic (GFRP) and one large span (57nt) steel tensegrity stressed spline membranes are designed, form-found and analysed under realistic loading conditions. These design studies show firstly that the spline and membrane stresses occurring under loading are within acceptable material limits and secondly that buckling occurs at values much higher than those encountered in reality. This thesis has demonstrated that engineered stressed spline structures, for which the development of a 3DOF was essential, have great design potential.
|
17 |
Estudio y desarrollo de técnicas de medición y análisis de vibraciones torsionalesChiappero, Guillermo Daniel 12 August 2013 (has links)
El objetivo de esta tesis es desarrollar y evaluar una técnica de medición y análisis de vibraciones torsionales en máquinas rotantes, utilizando para ello instrumentación de uso común en la industria. Se presenta información detallada acerca de los principios físicos sobre los que se basa la técnica de medición propuesta, así como también de los procedimientos empleados. Debido a que gran parte de los problemas asociados a vibraciones torsionales pueden ocurrir a velocidades de operación constante, los ensayos fueron realizados bajo dicha condición. El trabajo experimental fue realizado sobre dos modelos mecánicos. El primero, utiliza una junta Hooke para generar las oscilaciones torsionales y fue empleado para la calibración de la técnica de medición. El segundo, representa las características físicas de una máquina rotativa y fue utilizado para contrastar el valor de la primera frecuencia natural medida experimen-talmente con el valor calculado con un modelo analítico de 3 discos y 2 tramos de eje, obteniéndose buena concordancia. Los resultados de los ensayos realizados con ambos modelos experimentales, demostraron que es posible utilizar la técnica propuesta para la medición de vibraciones torsionales y que se puede utilizar dicha medición como una herramienta importante para el diagnóstico de problemas en máquinas rotantes. / The aim of this thesis is to develop and evaluate a technique of measurement and analysis of torsional vibrations in rotating machines. For this purpose, instrumentation commonly applied in industries is used. Detailed information is presented about the physical principles on which the proposed measurement technique is based and about the procedures used. As most of the problems associated with torsional vibrations can occur at constant speeds of operation, the testing were conducted under that condition. The experimental work was developed using two mechanical models. The first model that uses a Hooke joint to generate torsional oscillations, was used for the measurement technique calibration. The second experimental model that represent the mechanical properties of a rotating machine was used to compare the value of the measured first natural frequency with the computed value using an analytical model of 3 discs and 2 shaft stations. The testing results have shown that it is possible to use the technique proposed for the measurement of torsional vibrations as an important tool for diagnostic in problems of rotating machines.
|
18 |
Numerical Modeling and Analysis of Composite Beam Structures Subjected to Torsional LoadingHsieh, Kunlin 16 May 2007 (has links)
Torsion of cylindrical shafts has long been a basic subject in the classical theory of elasticity. In 1998 Swanson proposed a theoretical solution for the torsion problem of laminated composites. He adopted the traditional formulation of the torsion problem based on Saint Venant's torsion theory. The eigenfunction expansion method was employed to solve the formulated problem. The analytical method is proposed in this study enabling one to solve the torsion problem of laminated composite beams. Instead of following the classical Saint Venant theory formulation, the notion of effective elastic constant is utilized. This approach uses the concept of elastic constants, and in this context the three-dimensional non-homogeneous orthotropic laminate is replaced by an equivalent homogeneous orthotropic material. By adopting the assumptions of constant stress and constant strain, the effective shear moduli of the composite laminates are then derived. Upon obtaining the shear moduli of the equivalent homogeneous material, the effective torsional rigidity of the laminated composite rods can be determined by employing the theory developed by Lekhnitskii in 1963. Finally, the predicted results based on the present analytical approach are compared with those by the finite element, the finite difference method and Swanson's results. / Master of Science
|
19 |
Validation of computer-generated results with experimental data obtained for torsional vibration of synchronous motor-driven turbomachineryGanatra, Nirmal Kirtikumar 30 September 2004 (has links)
Torsional vibration is an oscillatory angular twisting motion in the rotating members of a system. It can be deemed quite dangerous in that it cannot be detected as easily as other forms of vibration, and hence, subsequent failures that it leads to are often abrupt and may cause direct breakage of the shafts of the drive train. The need for sufficient analysis during the design stage of a rotating machine is, thus, well justified in order to avoid expensive modifications during later stages of the manufacturing process. In 1998, a project was initiated by the Turbomachinery Research Consortium (TRC) at Texas A&M University, College Station, TX, to develop a suite of computer codes to model torsional vibration of large drive trains. The author had the privilege of developing some modules in Visual Basic for Applications (VBA-Excel) for this suite of torsional vibration analysis codes, now collectively called XLTRC-Torsion. This treatise parleys the theory behind torsional vibration analysis using both the Transfer Matrix approach and the Finite Element approach, and in particular, validates the results generated by XLTRC-Torsion based on those approaches using experimental data available from tests on a 66,000 HP Air Compressor.
|
20 |
Validation of computer-generated results with experimental data obtained for torsional vibration of synchronous motor-driven turbomachineryGanatra, Nirmal Kirtikumar 30 September 2004 (has links)
Torsional vibration is an oscillatory angular twisting motion in the rotating members of a system. It can be deemed quite dangerous in that it cannot be detected as easily as other forms of vibration, and hence, subsequent failures that it leads to are often abrupt and may cause direct breakage of the shafts of the drive train. The need for sufficient analysis during the design stage of a rotating machine is, thus, well justified in order to avoid expensive modifications during later stages of the manufacturing process. In 1998, a project was initiated by the Turbomachinery Research Consortium (TRC) at Texas A&M University, College Station, TX, to develop a suite of computer codes to model torsional vibration of large drive trains. The author had the privilege of developing some modules in Visual Basic for Applications (VBA-Excel) for this suite of torsional vibration analysis codes, now collectively called XLTRC-Torsion. This treatise parleys the theory behind torsional vibration analysis using both the Transfer Matrix approach and the Finite Element approach, and in particular, validates the results generated by XLTRC-Torsion based on those approaches using experimental data available from tests on a 66,000 HP Air Compressor.
|
Page generated in 0.0536 seconds