• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial community analysis of a laboratory-scale biological process for the treatment of vegetable oil effluent

Degenaar, Adrian Phillip January 2011 (has links)
Dissertation submitted in fulfilment with the requirements for the Masters Degree: Biotechnology, Durban University of Technology, 2011. / Untreated vegetable oil effluents (VOEs) are known for creating shock-loading problems for the receiving wastewater treatment installations, resulting in poor quality final effluents being produced which do not satisfy municipal discharge standards. Onsite activated sludge treatment as an alternative has not been fully investigated. Hence, in this investigation biological treatment using the activated sludge process was chosen as the method for the treatment of VOE. The effect of VOE on measured process parameters was also determined. Novel molecular techniques such as fluorescent in situ hybridisation (FISH) and dot-blot hybridization have become powerful tools for the analysis of complex microbial communities that exist within activated sludge. The aim of this investigation was to evaluate biological treatment, optimize and apply FISH and dot-blot hybridization in order to analyze the microbial community implicated the biological treatment of VOE using probes EUBmix, ALF1b, BET42a, GAM42a and HGC69a. A laboratory-scale modified Ludzack-Ettinger (MLE) process setup and fed VOE with a COD (chemical oxygen demand) of ± 1000 mg/L. Daily monitoring of the process involved COD and TKN (total kjeldahl nitrogen) analysis of the influent and effluent as well as direct OUR (oxygen utilization rate) measurement and monitoring of the MLVSS (mixed liquor volatile suspended solids) concentration of the aerobic mixed liquor. The process exhibited overall COD and TKN removal capacities of 84% and 90% respectively. The aerobic mixed liquor had an OUR of 19 mgO/L.h and an average MLVSS concentration of 3000 mg/L. FISH results revealed that 72% of cells stained with 4‟, 6-diamidino-2-phenylindole (DAPI) within the aerobic mixed liquor bound to probe EUBmix, indicating a substantial Bacterial population within the laboratory-scale biological process. The alpha-Proteobacteria was identified as the dominant bacterial community comprising 31% of Bacterial cells, followed by the beta-Proteobacteria (17% of EUBmix), gamma-Proteobacteria (8% of EUBmix) and Actinobacteria (4% of EUBmix). Results of dot-blot hybridization were in agreement with FISH Adrian Phillip Degenaar| CHAPTER 1: General Introduction - v - results reiterating dominance of the alpha-Proteobacteria. This indicated that the class alpha-Proteobacteria could play a primary role in the biological degradation of VOE. This research will therefore aid in process design and retrofitting of biological processes treating VOE.
2

Microbial community analysis of a laboratory-scale biological process for the treatment of vegetable oil effluent

Degenaar, Adrian Phillip January 2011 (has links)
Dissertation submitted in fulfilment with the requirements for the Masters Degree: Biotechnology, Durban University of Technology, 2011. / Untreated vegetable oil effluents (VOEs) are known for creating shock-loading problems for the receiving wastewater treatment installations, resulting in poor quality final effluents being produced which do not satisfy municipal discharge standards. Onsite activated sludge treatment as an alternative has not been fully investigated. Hence, in this investigation biological treatment using the activated sludge process was chosen as the method for the treatment of VOE. The effect of VOE on measured process parameters was also determined. Novel molecular techniques such as fluorescent in situ hybridisation (FISH) and dot-blot hybridization have become powerful tools for the analysis of complex microbial communities that exist within activated sludge. The aim of this investigation was to evaluate biological treatment, optimize and apply FISH and dot-blot hybridization in order to analyze the microbial community implicated the biological treatment of VOE using probes EUBmix, ALF1b, BET42a, GAM42a and HGC69a. A laboratory-scale modified Ludzack-Ettinger (MLE) process setup and fed VOE with a COD (chemical oxygen demand) of ± 1000 mg/L. Daily monitoring of the process involved COD and TKN (total kjeldahl nitrogen) analysis of the influent and effluent as well as direct OUR (oxygen utilization rate) measurement and monitoring of the MLVSS (mixed liquor volatile suspended solids) concentration of the aerobic mixed liquor. The process exhibited overall COD and TKN removal capacities of 84% and 90% respectively. The aerobic mixed liquor had an OUR of 19 mgO/L.h and an average MLVSS concentration of 3000 mg/L. FISH results revealed that 72% of cells stained with 4‟, 6-diamidino-2-phenylindole (DAPI) within the aerobic mixed liquor bound to probe EUBmix, indicating a substantial Bacterial population within the laboratory-scale biological process. The alpha-Proteobacteria was identified as the dominant bacterial community comprising 31% of Bacterial cells, followed by the beta-Proteobacteria (17% of EUBmix), gamma-Proteobacteria (8% of EUBmix) and Actinobacteria (4% of EUBmix). Results of dot-blot hybridization were in agreement with FISH Adrian Phillip Degenaar| CHAPTER 1: General Introduction - v - results reiterating dominance of the alpha-Proteobacteria. This indicated that the class alpha-Proteobacteria could play a primary role in the biological degradation of VOE. This research will therefore aid in process design and retrofitting of biological processes treating VOE.
3

Batch flow behandling och kontinuerligt flöde av lakvatten i en rotzonsanläggning : En jämförande studie i pilotskala / Landfill leachate treatment in batch-fed and continuous flow constructed subsurface flow wetlands : A pilot-scale comparison

Nilsson, Dan January 2010 (has links)
<p>This report deals with the performance of a batch flow treatment of landfillleachate compared with a continuous flow system. The parameters in focus were total Kjeldahl nitrogen (TKN), BOD5 and COD. The pilot-scale experiment used eight barrels with a volume of 150 liters. Each barrel was constructed differently concerning its flow, its bed material grain size and its presence of plants or not. Four of the barrels worked in batch mode, thus four in continuous flow mode. The continuous flow systems were provided with water trough small tubes with regulators. Samples were collected once a week and analysis was carried out yielding results of BOD5, COD, TKN, pH and conductivity of the effluents. The same parameters were analyzed for the influent every week. The result shows that a wetland is a good way of treating the landfill leachate as the BOD5, COD and TKN decreases. Moreover the color, which contravenes with legislative demands in the region, was distinctly decreased. Yet the report failed to show a significant difference between batch loaded and continuous flow wetlands. More studies have to be carried out in order to determine or contradict whether batch mode in fact provides a better treatment.</p>
4

Batch flow behandling och kontinuerligt flöde av lakvatten i en rotzonsanläggning : En jämförande studie i pilotskala / Landfill leachate treatment in batch-fed and continuous flow constructed subsurface flow wetlands : A pilot-scale comparison

Nilsson, Dan January 2010 (has links)
This report deals with the performance of a batch flow treatment of landfillleachate compared with a continuous flow system. The parameters in focus were total Kjeldahl nitrogen (TKN), BOD5 and COD. The pilot-scale experiment used eight barrels with a volume of 150 liters. Each barrel was constructed differently concerning its flow, its bed material grain size and its presence of plants or not. Four of the barrels worked in batch mode, thus four in continuous flow mode. The continuous flow systems were provided with water trough small tubes with regulators. Samples were collected once a week and analysis was carried out yielding results of BOD5, COD, TKN, pH and conductivity of the effluents. The same parameters were analyzed for the influent every week. The result shows that a wetland is a good way of treating the landfill leachate as the BOD5, COD and TKN decreases. Moreover the color, which contravenes with legislative demands in the region, was distinctly decreased. Yet the report failed to show a significant difference between batch loaded and continuous flow wetlands. More studies have to be carried out in order to determine or contradict whether batch mode in fact provides a better treatment.

Page generated in 0.0588 seconds