• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Realizability of the Total Domination Criticality Index

Haynes, T. W., Mynhardt, C. M., Van Der Merwe, L. C. 01 May 2005 (has links)
For a graph G = (V, E), a set S ⊆ V is a total dominating set if every vertex in V is adjacent to some vertex in S. The smallest cardinality of any total dominating set is the total domination number γt(G). For an arbitrary edge e εE(Ḡ), γt(G) - 2 ≤ γt(G + e) ≤ γt(G); if the latter inequality is strict for each e ε E(Ḡ) ≠ φ, then G is said to be γt-critical. The criticality index of an edge e ε E(Ḡ) is γt(e) = γt(G) - γt(G + e). Let E(Ḡ) = [e1...,em} and S = ∑j=1m̄ci(ej). The criticality index of G is ci(G) = S/m̄. For any rational number k, 0 ≤ k ≤ 2, we construct a graph G with ci(G) = k. For 1 ≤ k ≤ 2, we construct graphs with this property that are γt-critical as well as graphs that are not γt-critical.

Page generated in 0.1222 seconds