Spelling suggestions: "subject:"total domination dont critical"" "subject:"total domination doit critical""
1 |
Total Domination Dot-Stable GraphsRickett, Stephanie A., Haynes, Teresa W. 28 June 2011 (has links)
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Two vertices of G are said to be dotted (identified) if they are combined to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. We note that dotting any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most 2. A graph is total domination dot-stable if dotting any pair of adjacent vertices leaves the total domination number unchanged. We characterize the total domination dot-stable graphs and give a sharp upper bound on their total domination number. We also characterize the graphs attaining this bound.
|
2 |
Total Domination Dot Critical and Dot Stable Graphs.McMahon, Stephanie Anne Marie 08 May 2010 (has links) (PDF)
Two vertices are said to be identifed if they are combined to form one vertex whose neighborhood is the union of their neighborhoods. A graph is total domination dot-critical if identifying any pair of adjacent vertices decreases the total domination number. On the other hand, a graph is total domination dot-stable if identifying any pair of adjacent vertices leaves the total domination number unchanged. Identifying any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most two. Among other results, we characterize total domination dot-critical trees with total domination number three and all total domination dot-stable graphs.
|
Page generated in 0.1579 seconds