• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Folheações ortogonais em variedades riemannianas / Orthogonal foliations on riemannian manifolds

Silva, Euripedes Carvalho da 29 November 2017 (has links)
Neste trabalho, estabelecemos uma equação que relaciona a curvatura de Ricci de uma variedade riemanniana M e as segundas formas fundamentais de duas folheações ortogonais de dimensões complementares, F e F, definidas em M. Usando essa equação, encontramos uma estimativa da curvatura média da folheação F e uma condição necessária e suficiente para que tal folheação seja totalmente geodésica. Mostramos também uma condição suficiente para que M seja localmente um produto riemanniano das folhas de F e F, se uma das folheações for totalmente umbílica. Por fim, provamos ainda uma fórmula integral válida para tais folheações. / In this work, we and an equation that relates the Ricci curvature of a riemannian manifold M and the second fundamental forms of two orthogonal foliations of complementary dimensions, F and F, defined on M. Using this equation, we and an estimate of the mean curvature of the foliation F and a necessary and suficient condition for the foliation F to be totally geodesic. We also show a suficient condition for the manifold M to be locally a riemannian product of the leaves of F and F, if one of the foliations is totally umbilical. Finally, we also prove an integral formula for such foliations.
2

Folheações ortogonais em variedades riemannianas / Orthogonal foliations on riemannian manifolds

Euripedes Carvalho da Silva 29 November 2017 (has links)
Neste trabalho, estabelecemos uma equação que relaciona a curvatura de Ricci de uma variedade riemanniana M e as segundas formas fundamentais de duas folheações ortogonais de dimensões complementares, F e F, definidas em M. Usando essa equação, encontramos uma estimativa da curvatura média da folheação F e uma condição necessária e suficiente para que tal folheação seja totalmente geodésica. Mostramos também uma condição suficiente para que M seja localmente um produto riemanniano das folhas de F e F, se uma das folheações for totalmente umbílica. Por fim, provamos ainda uma fórmula integral válida para tais folheações. / In this work, we and an equation that relates the Ricci curvature of a riemannian manifold M and the second fundamental forms of two orthogonal foliations of complementary dimensions, F and F, defined on M. Using this equation, we and an estimate of the mean curvature of the foliation F and a necessary and suficient condition for the foliation F to be totally geodesic. We also show a suficient condition for the manifold M to be locally a riemannian product of the leaves of F and F, if one of the foliations is totally umbilical. Finally, we also prove an integral formula for such foliations.

Page generated in 0.1181 seconds