• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 20
  • 6
  • Tagged with
  • 62
  • 22
  • 17
  • 14
  • 14
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Western Boundary Dynamics in the Arabian Sea / Dynamique de bord ouest en mer d'Arabie

Vic, Clément 12 November 2015 (has links)
Le but de cette thèse est d'analyser plusieurs phénomènes de bord ouest de la Mer d'Arabie : (i) le cycle de vie d'un tourbillon de mésoéchelle persistant, le Great Whirl; (ii) la dynamique d'un écoulement d'eau dense (outflow) formée dans une mer adjacente, l'outflow du Golfe Persique; et (iii) une remontée d'eau profonde (upwelling) saisonnière dans la zone côtière d'Oman. Le point commun entre ces phénomènes est leur localisation sur un bord ouest océanique. Ils sont donc influencés par des forçages locaux (notamment les vents de mousson) et les forçages à distance (ondes de Rossby et tourbillons dérivant vers l'ouest). En particulier, ces derniers vont jouer un rôle particulier car la Mer d'Arabie est située à basses latitudes, ce qui implique une propagation rapide des ondes longues et tourbillons. De plus, des ondes sont continuellement excitées par le régime saisonnier des moussons. Nous avons mis au point des expériences numériques de différentes complexités en utilisant un modèle aux équations primitives. Ces expériences permettent soit de simuler de manière réaliste la dynamique complexe de la Mer d'Arabie, soit d'isoler un processus en particulier. Les résultats principaux peuvent se résumer comme suit : (i) le cycle de vie du Great Whirl est significativement impacté par les ondes de Rossby annuelles. Le rotationnel de la tension de vent joue un rôle important dans le maintien, le renforcement et la barotropisation du tourbillon. (ii) La dispersion de l'Eau du Golfe Persique (Persian Gulf Water, PGW) est déterminée par le mélange induit par les tourbillons de mésoéchelle. Précisément, ces tourbillons entrent dans le Golfe d'Oman (où se déverse la PGW), et interagissent avec la topographie. Ces interactions frictionnelles produisent des bandes de vorticité très intenses dans la couche limite de fond. Celles-ci sont arrachées et forment des tourbillons de sous-mésoéchelle. Ces tourbillons capturent de la PGW initialement située sur la pente continentale et la redistribuent dans le golfe d'Oman. Ce mécanisme donne finalement lieu à du mélange, permettant d'expliquer le gradient de salinité climatologique observé en profondeur. (iii) La dynamique de l'upwelling saisonnier au large d'Oman contraste fortement avec la dynamique des upwelling de bord est (Eastern Boundary Upwelling Systems, EBUS). En effet, les ondes de Rossby se propagent vers le large dans les EBUS et vers la côte dans l'upwelling de bord ouest d'Oman. Ces ondes modulent la réponse en température de l'upwelling forcé par le vent.Dans l'ensemble, ces résultats sont relativement spécifiques à la Mer d'Arabie. La faible extension zonale et la basse latitude de la Mer d'Arabie, ainsi que le régime de mousson des vents saisonniers en font une région particulière. La propagation rapide des ondes et tourbillons et leurs interactions avec le bord ouest façonnent les régimes de turbulence de la Mer d'Arabie. / This PhD aims to investigate some western boundary processes in the Arabian Sea : (i) the life cycle of the socalled Great Whirl, a persistent mesoscale eddy; (ii) the dynamics of the Persian Gulf outflow, a marginal sea dense outflow; and (iii) the seasonal Oman upwelling, a coastal upwelling forced by summermonsoonal winds. The cornerstone of all these phenomena is their locationat a western boundary, which makes then being influenced by both localforcing (e.g., monsoonal winds) and remote forcing (Rossby waves and wesward drifting eddies). Specifically, the later are expected to impact the western boundary dynamics since the low latitude of the Arabian Sea implies a fast westward propagation of long Rossby waves and eddies. Moreover, waves are continously excited by the reversing monsoonal winds. Based on a primitive equation model, we designed numerical experiments of different complexity that allowed to either realistically simulate the dynamics in the Arabian Sea or to isolate some processes.Major findings can be summarized as follows : (i) The Great Whirl life cycle is found to be significantly paced by annual Rossby waves, although the strong monsoonal wind stress curl is of major importance to sustain the structure. (ii) The Persian Gulf Water (PGW) spreading in the Gulf of Oman and the northern Arabian Sea can be explained by the stirring done by eddies entering the Gulf. These remotely formed surface intensifed mesoscale eddies propagate into the Gulf and interact with the topography. Frictional interactions produce intense vorticity strips at the boundary that detach and roll up in the interior, forming submesoscale coherent vortices (SCV). These SCV trap PGW initially located on the slope and redistribute it in the interior. This mechanism of transport ultimately produces mixing that explains the large-scale gradient of salinity in the gulf. (iii) We find that the dynamics of the seasonal upwelling of Oman contrasts with the more deeply studied Eastern Boundary Upwelling Systems (EBUS). In particular, Rossby waves, propagating offshore in EBUS vs. onshore in this western boudary upwelling, are found to modulate the wind driven upwelling and its sea surface temperature response.Overall, these results appear to be rather specific to the Arabian Sea. The short zonal extent and the low-latitude of the Arabian Sea, as well as the seasonally reversing wind forcing are the distinguishing features of this region. Fast waves and drifting eddies and their interactions with the western boundary significantly shape the turbulent regimes of the western Arabian Sea.
62

Simulation aérodynamique d'extrémités de pales de rotors sustentateurs d'hélicoptère / Aerodynamic simulations of helicopter main-rotor blade tips

Joulain, Antoine 08 December 2015 (has links)
L’aérodynamique de l’hélicoptère est fortement impactée par les tourbillons générés aux extrémités de pales. La complexité des phénomènes en jeux et l’insuffisance de données expérimentales locales font du design d’extrémité un véritable défi. Cette étude propose une nouvelle approche dédiée à l’étude des extrémités en vol stationnaire. Une méthode numérique rapide et précise est mise au point afin d’étudier une extrémité de pale en rotation comme une extrémité d’aile fixe. Chaque étape de la construction de la méthode est validée par des comparaisons détaillées avec des données expérimentales publiées. Le code CFD elsA est dans un premier temps utilisé pour mettre en place une méthode de calcul basée sur la résolution des équations Reynolds-Averaged Navier-Stokes en stationnaire. La convergence de la solution et l’indépendance au maillage et aux paramètres numériques sont étudiées en détail en deux, puis en trois dimensions. La précision importante de la solution numérique permet d’analyser finement la physique de l’enroulement tourbillonnaire en extrémité. Des géométries tronquée et arrondie sont étudiées en détail, et révèlent la présence de systèmes tourbillonnaires complexes. Puis la nouvelle méthode d’adaptation pale en rotation / aile fixe est présentée. Une méthode de calcul hybride est mise au point entre le code de mécanique du vol HOST et le code elsA. En repère fixe, l’aérodynamique globale sur la pale et locale en extrémité est calculée fidèlement pour toutes les configurations étudiées. Comparée aux méthodes d’adaptation précédemment publiées, cette nouvelle stratégie offre une amélioration considérable concernant la simulation de l’aérodynamique de pale. / Helicopter aerodynamics is strongly influenced by the vortices generated from the rotor-blade tips. The design of efficient tip shapes is a challenging task because of the complexity of the aerodynamic phenomena involved and the lack of local blade-tip flow measurements. This work provides a contribution to the design of helicopter tips in hover. An efficient, relatively simple and quick numerical method is set up to study rotating blade tips in fixed-wing configurations. The accuracy of the method is shown at each step of the construction by comprehensive comparisons with reliable experimental data from the literature. First, an efficient steady Reynolds-Averaged Navier-Stokes method is constructed using ONERA's elsA code. Comprehensive studies of convergence, grid dependence and sensitivity to the numerical method are performed in two and three dimensions. The very good agreement of the solution with measurements and the accuracy of the numerical method allow a physical analysis with unprecedented detail of the vortex generation and roll-up near square and rounded wing tips. The new methodology of framework adaptation is then presented. An uncoupled hybrid strategy is set up using AIRBUS HELICOPTERS' Comprehensive Analysis code HOST and the Computational Fluid Dynamics solver elsA. Global and local performance calculations are validated for all investigated test cases. Comparison with previously published adaptation methods indicates considerable improvement in the prediction of the blade aerodynamics.

Page generated in 0.0283 seconds