• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approches experimentales et theoriques de la dynamique du noyau terrestre : tourbillon geostrophique de gallium liquide dans un champ magnetique, anisotropie et rotation de la graine, chemins d'inversion

Brito, Daniel 06 January 1998 (has links) (PDF)
J'ai étudié durant ma thèse quatre problèmes physiques et magnétohydrodynamiques intervenant dans le noyau terrestre. Chaque étude fait l'objet d'une partie indépendante de ce mémoire. Les deux premières parties s'appuient sur des expériences en laboratoire et les deux dernières reposent sur des calculs théoriques et numériques. La première partie traite de l'étude expérimentale d'un tourbillon vertical de métal liquide (gallium) soumis à un champ magnétique transverse. Nous avons étudié l'effet simultané des forces de Coriolis (dues à la rotation) et des forces de Lorentz (dues au champ magnétique) sur une structure dynamique analogue à celles qui pourraient* être présentes dans le noyau liquide (colonnes convectives geostrophiques). Les mesures expérimentales (vitesse du fluide, champ magnétique induit, différences de potentiels électriques, température) sont interprétées à l'aide d'un modèle rendant compte de la dynamique du tourbillon et de la distribution des courants électriques en son sein . Les forces de Coriolis rigidifient l'écoulement selon l'axe de rotation alors que l'effet principal du champ magnétique est d'une part, de freiner le fluide, et d'autre part, d'agrandir la partie centrale du tourbillon; cet élargissement concorde avec la présence de colonnes géostrophiques de grand diamètre dans le noyau liquide. Les mesures expérimentales de dissipation ohmique (effet Joule) ont permis de montrer quant à elles que le champ magnétique toroïdal de grande échelle dans le noyau liquide ne peut excéder 25 mT si la convection s'y déroule sous la forme de colonnes géostrophiques. La deuxième partie traite de cristallisation expérimentale de gallium . L'objectif est cette fois de comprendre l'origine de l'anisotropie élastique de la graine terrestre. Nous avons suivi expérimentalement les vitesses de cristallisation et analysé la texture des cristaux de gallium. L'anisotropie élastique mesurée au sein des polycristaux de gallium (méthode ultrasonore) montre que l'orientation des axes cristallins n'est pas déterminée par la direction du flux de chaleur, mais plutôt guidée par l'orientation de germes initiaux. Nous avons de plus montré que la texture des cristaux de gallium est indépendante des conditions de solidification tels la vigueur de l'écoulement ou le champ magnétique imposé. Il est conclu que l'anisotropie de la graine pourrait être causée par une orientation préférentielle du réseau cristallin de fer, cette orientation étant déterminée par les germes initiaux présents au centre de la graine. La troisième partie traite d'un problème de couplage électromagnétique entre le noyau liquide et la graine solide; ce travail est motivé par de récentes études sismologiques s'attachant à mesurer une rotation différentielle de la graine par rapport au manteau terrestre. Nos simulations numériques montrent que le couplage électromagnétique est extrêmement efficace entre la graine et le noyau: le couple synchronise la vitesse de rotation de la graine solide à la vitesse du fluide avoisinant dans le noyau liquide. Dans le cadre de nos hypothèses, une relation est établie entre le champ magnétique toroïdal présent dans le noyau liquide et la superrotation de la graine; cette relation suggère qu 'une détermination précise de la rotation différentielle de la graine pourrait donner accès à l'intensité du champ magnétique toroïdal présent dans les profondeurs du noyau. La quatrième partie traite d'un problème de couplage électromagnétique entre le noyau liquide et le manteau solide; nous avons étudié l'influence d'une couche D" hétérogène (en conductivité électrique) présente à la base du manteau sur les chemins d'inversion d'un dipôle magnétique. Le couplage électromagnétique hétérogène résulte en une rotation différentielle entre le noyau et le manteau; cette rotat ion est très lente (à l'échelle de temps des inversions) et ne peut expliquer l'existence éventuelle d'un confinement longitudinal des Pôles Géomagnétiques Virtuels (PGV) pendant les inversions du champ magnétique.

Page generated in 0.0895 seconds