• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibration studies of the Hayes Coastal Engineering Laboratory

Thurlow, Aimee Rebecca 12 April 2006 (has links)
The Hayes Coastal Engineering Laboratory is a new laboratory with two water basins: a 45.72-meters long, 3.66 meters wide and 3.06 meters deep Tow Tank with sediment pit for dredging and current flow studies, and a 36.58 meters long, 22.86 meters wide and 1.22 meters deep 3D Wave Basin for coastal wave studies. In order to assess the capabilities of the lab a series of tests were done in both tanks. Hydrodynamic tests in the Tow Tank using a Micro Acoustic Doppler Velociometer measured current flow in the tank and assessed the efficacy of different filters to stabilize flow patterns. A concrete dam structure installed near the reversed diffusers most effectively stabilized flow of all the configurations tested. Wave tests were conducted in the 3D Wave Basin with the newly-installed 48 paddle Rexroth wave generator at 0.5 and 1.0 meter water depths using wired and wireless capacitance wave gauges. These tests measured characteristics of the generated waves and reflection from the rubble-mound beach. In addition, initial testing of the Active Reflection Absorber (ARA) system was done. Correlating the wave data to the theoretical wave being produced showed that with water depth of 0.5 meters the 0.1 meter waves were well-formed, but the 0.2 meter waves showed energy loss and lower correlation. The results from one meter water depth wave tests showed good formation of 0.2 meter waves. In nearly all wave tests with pool buoys installed the waves were better formed with good correlation and a better fitting power spectrum. The beach reflection was within the expected value range, being ten percent and below for most tests. ARA, while operational, needs to be further tuned to find the settings that will increase its effectiveness.
2

Calibration studies of the Hayes Coastal Engineering Laboratory

Thurlow, Aimee Rebecca 12 April 2006 (has links)
The Hayes Coastal Engineering Laboratory is a new laboratory with two water basins: a 45.72-meters long, 3.66 meters wide and 3.06 meters deep Tow Tank with sediment pit for dredging and current flow studies, and a 36.58 meters long, 22.86 meters wide and 1.22 meters deep 3D Wave Basin for coastal wave studies. In order to assess the capabilities of the lab a series of tests were done in both tanks. Hydrodynamic tests in the Tow Tank using a Micro Acoustic Doppler Velociometer measured current flow in the tank and assessed the efficacy of different filters to stabilize flow patterns. A concrete dam structure installed near the reversed diffusers most effectively stabilized flow of all the configurations tested. Wave tests were conducted in the 3D Wave Basin with the newly-installed 48 paddle Rexroth wave generator at 0.5 and 1.0 meter water depths using wired and wireless capacitance wave gauges. These tests measured characteristics of the generated waves and reflection from the rubble-mound beach. In addition, initial testing of the Active Reflection Absorber (ARA) system was done. Correlating the wave data to the theoretical wave being produced showed that with water depth of 0.5 meters the 0.1 meter waves were well-formed, but the 0.2 meter waves showed energy loss and lower correlation. The results from one meter water depth wave tests showed good formation of 0.2 meter waves. In nearly all wave tests with pool buoys installed the waves were better formed with good correlation and a better fitting power spectrum. The beach reflection was within the expected value range, being ten percent and below for most tests. ARA, while operational, needs to be further tuned to find the settings that will increase its effectiveness.
3

Nonlinear aerodynamic responses in tow tank study for a two dimensional NACA 0015 airfoil

Fang, Kuan-Chieh January 1992 (has links)
No description available.
4

Effect of aeroelasticity in tow tank strain gauge measurements on a NACA 0015 airfoil

Li, Sihao January 1993 (has links)
No description available.
5

Comparative Hydrodynamic Testing of Small Scale Models

Acosta, Jared 19 December 2008 (has links)
Early in the ship design process, naval architects must often evaluate and compare multiple hull forms for a specific set of requirements. Analytical tools are useful for quick comparisons, but they usually specialize in a specific hull type and are therefore not adequate for comparing dissimilar hull types. Scale model hydrodynamic testing is the traditional evaluation method, and is applicable to most hull forms. Scale model tests are usually performed on the largest model possible in order to achieve the most accurate performance predictions. However, such testing is very resource intensive, and is therefore not a cost effective method of evaluating multiple hull forms. This thesis explores the testing of small scale models. It is hypothesized that although the data acquired by these tests will not be accurate enough for performance predictions, they will be accurate enough to rank the performance of the multiple hull forms being evaluated.

Page generated in 0.0696 seconds