• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AI-based Quality Inspection forShort-Series Production : Using synthetic dataset to perform instance segmentation forquality inspection / AI-baserad kvalitetsinspektion för kortserieproduktion : Användning av syntetiska dataset för att utföra instans segmentering förkvalitetsinspektion

Russom, Simon Tsehaie January 2022 (has links)
Quality inspection is an essential part of almost any industrial production line. However, designing customized solutions for defect detection for every product can be costlyfor the production line. This is especially the case for short-series production, where theproduction time is limited. That is because collecting and manually annotating the training data takes time. Therefore, a possible method for defect detection using only synthetictraining data focused on geometrical defects is proposed in this thesis work. The methodis partially inspired by previous related work. The proposed method makes use of aninstance segmentation model and pose-estimator. However, this thesis work focuses onthe instance segmentation part while using a pre-trained pose-estimator for demonstrationpurposes. The synthetic data was automatically generated using different data augmentation techniques from a 3D model of a given object. Moreover, Mask R-CNN was primarilyused as the instance segmentation model and was compared with a rival model, HTC. Thetrials show promising results in developing a trainable general-purpose defect detectionpipeline using only synthetic data

Page generated in 0.0554 seconds